Brain metabolism is a fundamental aspect of biology and human disease. The brain critically depends on glucose, consuming large quantities as the biochemical fuel for cognition, memory, and behavior. Fundamental aspects of brain metabolism have been extensively studied, but recent evidence regarding the key role of glucose and glycogen metabolism in neurological diseases has recently opened up new avenues of research. The neurological disease where aberrant glucose metabolism has been investigated in-depth is Lafora disease (LD). LD is an autosomal recessive, fatal, glycogen storage disease (GSD) that equally affects both sexes. Symptoms emerge in adolescence with drug-resistant epilepsy, ataxia, neurodegeneration, and a rapid decline into a vegetative state before death. Results from several labs using multiple models have demonstrated that aberrant intracellular glycogen-like aggregates, known as polyglucosan bodies (PGBs), are the cause of LD. Strikingly, we and others have identified PGBs in multiple neurological diseases and we hypothesize that PGBs are a driving force in disease progression for brain-impacted GSDs, and that PGBs also play a critical role in Alzheimer's disease (AD). We have made foundational discoveries regarding glucose hypometabolism in LD, defined how PGBs impact cellular processes, developed cutting-edge tools to determine the underlying cellular mechanisms, and established therapeutic platforms to inhibit and/or eliminate PGBs. Defining the mechanisms of glycogen metabolism in LD provides insights into how PGBs form and impact brain homeostasis. Thus, LD offers a unique window into both normal brain glucose metabolism and broader disease implications when this metabolism is perturbed. This supplement will allow Mr. Trey Coburn to further hone his skills in neuroscience. His results will assist in determining the role of PGBs in AD. He will look at perturbations in signaling at the molecular level, elucidate changes in cellular physiology, and establish novel therapeutic modalities at the organismal level.

Public Health Relevance

The focus of our work is to determine how carbohydrate aggregates impact multiple neurological diseases and to translate this knowledge into therapies. Our proposal is built on our past discoveries and uses complementary approaches to advance our understanding of the intertwined events of cell metabolism, neurodegeneration, and neurological disease. Completion of this work will yield a better comprehension of these complex events and will allow us to translate our insights into disease mechanisms, diagnoses, and treatments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Unknown (R35)
Project #
3R35NS116824-01S1
Application #
10285469
Study Section
Program Officer
Leenders, Miriam
Project Start
2021-03-01
Project End
2028-04-30
Budget Start
2021-03-01
Budget End
2021-04-30
Support Year
1
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Kentucky
Department
Biochemistry
Type
Schools of Medicine
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40526