Heavy alcohol intake is known to damage the ability of the lung to protect itself from infections such as pneumonia and bronchitis. The lung's first line of defense against such infection is to trap inhaled particles and propel them out of the lung using the mucociliary apparatus. In a healthy individual, this apparatus produces mucus, which traps inhaled particles, and is then propelled out of the lung by cilia, the fingerlike projections of the lung lining. Damage to cilia results in pneumonia and loss of lung function. We have established that alcohol profoundly injures this delicate mucociliary apparatus by altering critical proteins called kinases. Two of these kinases, PKA and PKG, are well-described molecules that regulate cell functions including lung cilia. Our experiments in alcohol-fed mice have demonstrated that alcohol profoundly impairs the function of these kinases, resulting in a loss of the normal """"""""fight or flight"""""""" responsiveness of the mucociliary apparatus in a manner that requires the production of nitric oxide. While we have established that alcohol causes this problem, we do not know how long it persists if alcohol is removed. We also do not know exactly how alcohol alters these important kinase-dependent functions in cilia. This leads us to hypothesize that: Chronic alcohol exposure causes time-dependent and reversible impairment of mucociliary function by altering specific regulatory proteins in airway epithelial cilia. In this proposal, we propose experiments designed to answer two questions: 1. Is alcohol-driven impairment of mucociliary function preventable or reversible? and 2. Which cilia proteins are affected by alcohol? We propose to answer these questions through experiments proposed in four specific aims: 1. Characterize the time course and reversibility of chronic alcohol impairment of mucociliary function;2. Define the signaling pathways and role that oxidant stress plays in alcohol-mediated nitric oxide-dependent regulation of ciliary motility, 3. Determine the kinase phosphorylation targets present on cilia that are altered by alcohol exposure;and 4. Identify the molecular determinants of alcohol-mediated cilia injury using isolated cilia models. Although we have learned much about the impact and mechanisms of alcohol injury to mucociliary function, the studies we propose will extend our knowledge into how this may be prevented or treated and exactly how alcohol alters molecules critical for cilia function and lung health.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
3R37AA008769-19S1
Application #
8135127
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Jung, Kathy
Project Start
1991-03-01
Project End
2011-09-29
Budget Start
2010-09-30
Budget End
2011-09-29
Support Year
19
Fiscal Year
2010
Total Cost
$80,000
Indirect Cost
Name
University of Nebraska Medical Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Hulsebus, Holly J; Curtis, Brenda J; Molina, Patricia E et al. (2018) Summary of the 2017 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 69:51-56
Bell, Wade E; Hallworth, Richard; Wyatt, Todd A et al. (2015) Use of a novel cell adhesion method and digital measurement to show stimulus-dependent variation in somatic and oral ciliary beat frequency in Paramecium. J Eukaryot Microbiol 62:144-8
Berger, John P; Simet, Samantha M; DeVasure, Jane M et al. (2014) Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells. Alcohol 48:493-500
Balas, Michele C; Vasilevskis, Eduard E; Olsen, Keith M et al. (2014) Effectiveness and safety of the awakening and breathing coordination, delirium monitoring/management, and early exercise/mobility bundle. Crit Care Med 42:1024-36
Simet, Samantha M; Pavlik, Jacqueline A; Sisson, Joseph H (2013) Proteomic analysis of bovine axonemes exposed to acute alcohol: role of endothelial nitric oxide synthase and heat shock protein 90 in cilia stimulation. Alcohol Clin Exp Res 37:609-15
Wyatt, T A; Wells, S M; Alsaidi, Z A et al. (2013) Asymmetric dimethylarginine blocks nitric oxide-mediated alcohol-stimulated cilia beating. Mediators Inflamm 2013:592892
Allen-Gipson, Diane S; Zimmerman, Matthew C; Zhang, Hui et al. (2013) Smoke extract impairs adenosine wound healing: implications of smoke-generated reactive oxygen species. Am J Respir Cell Mol Biol 48:665-73
Wyatt, Todd A; Kharbanda, Kusum K; McCaskill, Michael L et al. (2012) Malondialdehyde-acetaldehyde-adducted protein inhalation causes lung injury. Alcohol 46:51-9
Bailey, Kristina L; LeVan, Tricia D; Yanov, Daniel A et al. (2012) Non-typeable Haemophilus influenzae decreases cilia beating via protein kinase C?. Respir Res 13:49
Fiedler, Sarah E; Sisson, Joseph H; Wyatt, Todd A et al. (2012) Loss of ASP but not ROPN1 reduces mammalian ciliary motility. Cytoskeleton (Hoboken) 69:22-32

Showing the most recent 10 out of 28 publications