The long range goal of the proposed work is to define the molecular components and mechanisms mediating Vibrio cholerae colonization and virulence protein secretion to the point where there is sufficient knowledge to intelligently incorporate this information into improved cholera vaccine strategies and antimicrobial therapies designed to inhibit these events. Most of the proposal involves analysis of the molecular mechanisms by which toxin coregulated pilus (TCP) is formed and mediates intestinal colonization. Some steps in the process by which TCP and other type 4 pili are built are linked and/or related to the process of toxin and other virulence determinant secretion by type II secretion systems. Thus further understanding of the mechanisms of type 4 pilus biogenesis should lead to the characterization of potential antimicrobial targets involved in multiple virulence pathways. We will examine the aspects of pilus biogenesis in detail. These experiments will be facilitated by our currently available collections of tcp genetic constructs and immunoreagents. Regarding the mechanism of TCP function, we will utilize the technique of field emission scanning electron microscopy in combination with specifially engineered tcpA missense mutations and a tcpB deletion mutant to address the biophysical mechanisms that lead to pilus supertwist formation, promoting the bacterial associations that represent the basis of microcolony formation in the intestine. Further characterization of TcpF and its role in colonization will be undertaken. This analysis is aided by the recent solution of the crytsal structure of TcpF and the mapping of a functional domain of the protein within this structure. Additional steps in the epithelial interaction with V. cholerae will be defined using carbohydrate binding analyses. Taken together, the results of the proposed studies will provide detailed information regarding the mechanisms of V. cholerae colonization from the levels of defining the components, understanding how they are elaborated to the cell surface and beyond.

Public Health Relevance

(See Instructions): Diarrheal diseases caused by enteric infectious bacteria continue to cause significant morbidity and mortality world-wide, including within the US. Despite years of sophisticated research on V. cholerae, the causative agent of cholera, there is still no effective vaccine. The type 4 pilus, toxin coregulated pilus (TCP), of V. cholerae is the major colonization factor and represents a paradigm for type 4 pilus biogenesis and function throughout the realm of enteric bacteria. The proposed studies are relevant to the prevention and cure of cholera as well as a number of other enteric diseases caused by gram-negative enteric bacterial infections world-wide, which addresses major goals of the NIH mission.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AI025096-29
Application #
8648948
Study Section
No Study Section (in-house review) (NSS)
Program Officer
Hall, Robert H
Project Start
1987-07-01
Project End
2017-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
29
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Dartmouth College
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
City
Hanover
State
NH
Country
United States
Zip Code
03755
Midgett, Charles R; Almagro-Moreno, Salvador; Pellegrini, Maria et al. (2017) Bile salts and alkaline pH reciprocally modulate the interaction between the periplasmic domains of Vibrio cholerae ToxR and ToxS. Mol Microbiol 105:258-272
Gao, Yang; Hauke, Caitlyn A; Marles, Jarrad M et al. (2016) Effects of tcpB Mutations on Biogenesis and Function of the Toxin-Coregulated Pilus, the Type IVb Pilus of Vibrio cholerae. J Bacteriol 198:2818-28
Almagro-Moreno, Salvador; Root, Michael Z; Taylor, Ronald K (2015) Role of ToxS in the proteolytic cascade of virulence regulator ToxR in Vibrio cholerae. Mol Microbiol 98:963-76
Almagro-Moreno, Salvador; Taylor, Ronald K (2013) Cholera: Environmental Reservoirs and Impact on Disease Transmission. Microbiol Spectr 1:
Megli, Christina J; Taylor, Ronald K (2013) Secretion of TcpF by the Vibrio cholerae toxin-coregulated pilus biogenesis apparatus requires an N-terminal determinant. J Bacteriol 195:2718-27
Son, Mike S; Taylor, Ronald K (2012) Growth and maintenance of Escherichia coli laboratory strains. Curr Protoc Microbiol Chapter 5:Unit 5A.4.
Son, Mike S; Taylor, Ronald K (2011) Genetic Screens and Biochemical Assays to Characterize Vibrio cholerae O1 Biotypes: Classical and El Tor. Curr Protoc Microbiol 22A:6A.2.1-6A.2.17
Jude, Brooke A; Taylor, Ronald K (2011) The physical basis of type 4 pilus-mediated microcolony formation by Vibrio cholerae O1. J Struct Biol 175:1-9
Son, Mike S; Megli, Christina J; Kovacikova, Gabriela et al. (2011) Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes. J Clin Microbiol 49:3739-49
Son, Mike S; Taylor, Ronald K (2011) Preparing DNA libraries for multiplexed paired-end deep sequencing for Illumina GA sequencers. Curr Protoc Microbiol Chapter 1:Unit 1E.4

Showing the most recent 10 out of 21 publications