The neural circuitry that encodes and mediates the establishment of cue-reward associations, an adaptive process that is essential for survival, likely becomes dysfunctional in neuropsychiatric illnesses such as drug addiction. While the full encoding of cue-reward associations require a distributed network of brain nuclei acting in concert to orchestrate behavioral output, neurons in ventral tegmental area and upstream circuits in cortex and hypothalamus are thought to play an important role in reward prediction and assigning incentive salience to environmental cues such as those that become associated with repeated drug use. In this application, we propose to state of the art deep brain two-photon imaging in awake and behaving mice to study how the encoding properties within these circuits emerge and are altered during primary reward exposure as well in associative learning. These experiments will provide important mechanistic information to explain how reward circuits encode and control the development and expression of cue-reward associations relevant to addiction.

Public Health Relevance

(Public Health Relevance Statement): Psychiatric and neurological diseases and disorders have a tremendous impact on society. Despite improved diagnosis and treatment, further advancement is significantly hindered by a lack of understanding how alterations in neural circuit function leads to the development and expression of disease states. The research directions outlined in this proposal will characterize the function of key neural circuits that are involved in psychiatric disease such as substance abuse disorders. We aim to study these neural circuit elements in order to identify potentially novel therapeutic targets for the treatment neuropsychiatric disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
3R37DA032750-09S1
Application #
10152339
Study Section
Program Officer
Sorensen, Roger
Project Start
2019-02-01
Project End
2022-01-31
Budget Start
2020-02-01
Budget End
2021-01-31
Support Year
9
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Washington
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Rossi, Mark A; Stuber, Garret D (2018) Overlapping Brain Circuits for Homeostatic and Hedonic Feeding. Cell Metab 27:42-56
Greene, R K; Spanos, M; Alderman, C et al. (2018) The effects of intranasal oxytocin on reward circuitry responses in children with autism spectrum disorder. J Neurodev Disord 10:12
McHenry, Jenna A; Otis, James M; Rossi, Mark A et al. (2017) Hormonal gain control of a medial preoptic area social reward circuit. Nat Neurosci 20:449-458
Van Den Berge, Nathalie; Albaugh, Daniel L; Salzwedel, Andrew et al. (2017) Functional circuit mapping of striatal output nuclei using simultaneous deep brain stimulation and fMRI. Neuroimage 146:1050-1061
Otis, James M; Namboodiri, Vijay M K; Matan, Ana M et al. (2017) Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543:103-107
Decot, Heather K; Namboodiri, Vijay M K; Gao, Wei et al. (2017) Coordination of Brain-Wide Activity Dynamics by Dopaminergic Neurons. Neuropsychopharmacology 42:615-627
Berrios, Janet; Stamatakis, Alice M; Kantak, Pranish A et al. (2016) Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation. Nat Commun 7:10702
Resendez, Shanna L; Jennings, Josh H; Ung, Randall L et al. (2016) Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat Protoc 11:566-97
Resendez, Shanna L; Stuber, Garret D (2015) In vivo calcium imaging to illuminate neurocircuit activity dynamics underlying naturalistic behavior. Neuropsychopharmacology 40:238-9
Jennings, Joshua H; Stuber, Garret D (2014) Tools for resolving functional activity and connectivity within intact neural circuits. Curr Biol 24:R41-R50

Showing the most recent 10 out of 15 publications