Relatively little is known about the molecular pathways defining the epithelial progenitor cells of the embryonic and adult lung and their role in lung development, steady state homeostasis and repair after damage caused by environmental and other agents. In this competitive renewal we will build on previous discoveries to obtain new information about basic mechanisms controlling the specification, proliferation, and differentiation of lung epithelial progenitor/stem cells, using the mouse as a model genetic organism.
In Aim 1 we will test the hypothesis that the developmental potential of epithelial progenitor cells in the distal tips of the embryonic lung changes in an orderly way over time so that early born descendants give rise to cells in the proximal airways while late born daughters give rise to alveolar cells. For this aim we have already generated two new lines of genetically engineered mice, Id2-GFP and Id2-CreER. These will enable us to follow the developmental fate of distal tip cells in vivo, isolate the cells at different times using flow cytometry, analyze their transcriptome using gene arrays, and test the role of candidate regulatory genes using gain and loss of function experiments.
In Aim 2 we will focus on the adult trachea and main bronchi which has a pseudostratified epithelium, as in a large proportion of the human airways. We will test the relative contribution of basal stem cells and secretory (Clara) cells in maintaining this region and in repairing it after injury by exposure to naphthalene or sulfur dioxide. This will be achieved using new K5-CreEr and Scgb1a1-CreEr alleles for fate mapping and gene manipulation. We will also elucidate basic mechanisms regulating the specification, self-renewal and differentiation of basal stem cells, focusing initially on the role of the transcription factor, Sox2. Finally, in a high risk Aim 3, we will test the hypothesis that small non-coding RNAs known as microRNAs can reversibly enhance the self-renewal potential of progenitor cells in the adult lung, either in the steady state or during repair. To do this we will initially inducibly express in basal and Clara cells the miR17-92 gene that encodes a conserved cluster of six microRNAs. We have already shown that this cluster enhances the proliferation of epithelial progenitors in the embryonic lung at the expense of their differentiation and we will now test this in adult progenitors. We will then test the activity of individual miR17-92 members or combinations of them. In the long term we will ask whether this activity can be obtained by direct application of double stranded small RNAs linked to cell-specific aptamers. PROJECT NARRATIVE. This work will increase our understanding of basic mechanisms regulating the embryonic development of the lung and the ability of the epithelial cells to undergo repair in the adult. In the long term the work may lead to potential therapies or predictive assays for pathological conditions related to defects in the supply, proliferation or differentiation of progenitor/stem cells in the human lung. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
2R37HL071303-16
Application #
7456820
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Blaisdell, Carol J
Project Start
1992-05-05
Project End
2013-02-28
Budget Start
2008-03-15
Budget End
2009-02-28
Support Year
16
Fiscal Year
2008
Total Cost
$390,000
Indirect Cost
Name
Duke University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Chung, Mei-I; Bujnis, Melissa; Barkauskas, Christina E et al. (2018) Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation. Development 145:
Chung, Mei-I; Hogan, Brigid L M (2018) Ager-CreERT2: A New Genetic Tool for Studying Lung Alveolar Development, Homeostasis, and Repair. Am J Respir Cell Mol Biol 59:706-712
Barkauskas, Christina E; Chung, Mei-I; Fioret, Bryan et al. (2017) Lung organoids: current uses and future promise. Development 144:986-997
Tadokoro, Tomomi; Gao, Xia; Hong, Charles C et al. (2016) BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development 143:764-73
Gao, Xia; Bali, Aman S; Randell, Scott H et al. (2015) GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J Cell Biol 211:669-82
Fedeles, Sorin V; So, Jae-Seon; Shrikhande, Amol et al. (2015) Sec63 and Xbp1 regulate IRE1? activity and polycystic disease severity. J Clin Invest 125:1955-67
Wansleeben, Carolien; Bowie, Emily; Hotten, Danielle F et al. (2014) Age-related changes in the cellular composition and epithelial organization of the mouse trachea. PLoS One 9:e93496
Barkauskas, Christina E; Cronce, Michael J; Rackley, Craig R et al. (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123:3025-36
Xu, Xia; Rock, Jason R; Lu, Yun et al. (2012) Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. Proc Natl Acad Sci U S A 109:4910-5
Rock, Jason R; Barkauskas, Christina E; Cronce, Michael J et al. (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108:E1475-83

Showing the most recent 10 out of 26 publications