?Development of a Nerve Cuff Electrode from Soft and Elastomeric Conducting Wires STTR Phase I Application? PI: Brady Clapsaddle, TDA Research, Inc. Bio-electronic interfaces are used in a wide array of applications for recording and providing electrical impulses to treat disease. One common interface device for the PNS is the cuff electrode. Current cuff electrodes have many failure modes, most commonly breakage of the brittle metal microwire leads during implantation or regular movement. Stiff metal wires also irritate soft tissue, leading to inflammatory response and scarring. Researchers and clinicians have realized that increased lifetime and ease of implantation of cuff electrodes would greatly benefit research and electrotherapy, prompting advances in commercial cuff electrodes in recent years. The development of materials that are easier to implant and have better tissue compatibility has been at the forefront of these advances. These new cuffs however, still mainly use metal microwires for contact with the tissue. Conducting polymers and carbonaceous materials offer better mechanical compatibility with tissues than their metal counterparts. TDA has recently developed a soft, elastomeric wire material that is compatible with tissue. Furthermore, TDA's wires are elastic, stretching to >200% of their original size (depending on formulation), and thus TDA's soft wires have the potential to eliminate many failure modes of traditional cuff electrodes by replacing brittle metal microwires. Due to their stretchable, pliable nature, TDA's soft wires can withstand the stress of implantation and result in robust interfaces with hardware. Using these materials, we propose to develop novel cuff electrodes with soft polymeric electrical leads to improve durability, ease of implantation, and tissue compatibility of cuff electrodes for applications in the peripheral nervous system (PNS). Our approach is to fabricate cuff electrodes with flexible conducting wires. Once fabricated, our collaborators at the University of Pittsburgh will demonstrate implantability in the PNS, acute in vivo functionality, and long term performance in a chronic in vivo study.

Public Health Relevance

?Development of a Nerve Cuff Electrode from Soft and Elastomeric Conducting Wires STTR Phase I Application? PI: Brady Clapsaddle, TDA Research, Inc. Cuff electrodes are used in a wide array of bio-applications for recording and providing electrical impulses to treat disease. Current cuff electrodes for chronic implantation applications, however, often fail due to common failure modes during implantation and use over long periods of time. In this project, using a novel electrode material, we will develop cuff electrodes to improve durability, ease of implantation, and tissue compatibility of cuff electrodes for applications in the peripheral nervous system (PNS).

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Small Business Technology Transfer (STTR) Grants - Phase I (R41)
Project #
5R41NS108865-02
Application #
9766420
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Caporello, Emily Laura
Project Start
2018-09-01
Project End
2021-02-28
Budget Start
2019-09-01
Budget End
2021-02-28
Support Year
2
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Tda Research, Inc.
Department
Type
DUNS #
181947730
City
Wheat Ridge
State
CO
Country
United States
Zip Code
80033