Snapshot Image Mapping Spectrometer (IMS) for High Resolution Biological Imaging Indirect Imaging is proposing, through the SBIR funding mechanism, to develop an innovative imaging device that will allow economical snapshot hyperspectral imaging for real time microscopy and other biomedical applications, and is compatible with most research grade light microscopes. Recent advances in fluorescent probes, detector technology and micro-fabrication now make it possible to build an Image Mapping Spectrometer (IMS) - a device for rapid, real time quantitative spectral imaging. The IMS is a widefield method for acquiring full spectral information simultaneously from every pixel. It has superior signal-to-noise ratio compared to scanning hyperspectral systems and can be used with optical sectioning methods such as Nipkow disk. The IMS works by spatially redirecting image zones to obtain space between lines and using a multi-prism element to acquire simultaneously spectral and spatial information about the object. The final spectral cube is reconstructed by remapping the pixel locations from the CCD 2D image sensor to respective voxels (x, y,;). This is a Phase I proposal, in which we will focus on (1) developing a larger format IMS system capable of collection a (x, y,;) datacube of size 500 x 500 x 48 with an initial wavelength range of 450 to 700 nm and testing the Image Mapping Spectrometer against currently available spectral imaging systems in several live cell imaging applications. In parallel the project will pursue (2) developing the means to manufacture an Image Mapper at minimal costs - the fabrication process is currently expensive and time consuming taking 100+ hours/per part depending on the size and complexity. We will pursue a new diamond ruling fabrication approach that has a potential to dramatically shorten the fabrication time. In addition we will implement (3) automatic calibration procedures and software for real-time data analysis and visualization leading to optimized performance, improved resolution and frame-rate spectral unmixing capability. For the first time this will provide researchers with immediate, live feedback in real-time living cell hyperspectral imaging. In summary, the IMS has the potential to significantly advance a wide range of applications in the area of cellular imaging by reducing the phototoxicity and photobleaching and allowing hyperspectral analysis at high frame rates. To further its impact, in the future, we plan to combine the IMS with optical sectioning by using structured illumination, Nipkow disk confocal, and/or spatial deconvolution. These 4-dimensional imaging systems (X, Y, Z,;) would further improve the signal-to-noise ratio of the collected images and improve their speed.

Public Health Relevance

The project targets the development of a modern spectrometer called high sampling Image Mapping Spectrometer enabling high resolution spectral imaging in real time. In consequence researchers will be able to rapidly advance the investigation of live cells with multiple fluorescent contrasts. The instrument's principle allows obtaining spectral information for entire image without scanning and thus improve signal to noise ratio and limit photo-bleaching effects. It also allows more efficient investigation of transient biological events. Technologies applied in the project and their low cost may potentially allow access of larger group of scientists to spectral imaging instrumentation.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
5R43GM099349-02
Application #
8325548
Study Section
Special Emphasis Panel (ZRG1-IMST-J (16))
Program Officer
Gindhart, Joseph G
Project Start
2011-09-15
Project End
2013-12-31
Budget Start
2012-09-01
Budget End
2013-12-31
Support Year
2
Fiscal Year
2012
Total Cost
$343,234
Indirect Cost
Name
Rebellion Photonics, Inc.
Department
Type
DUNS #
832445196
City
Houston
State
TX
Country
United States
Zip Code
77021