While it is well known that the brain undergoes rapid developmental changes from birth to early childhood, remarkably little is understood about the relationship between changes in brain size and composition and normal cognitive development. Yet we now know that several potentially debilitating disorders, among them the Autism Spectral Disorders, Attention Deficit Hyperactivity Disorder and Schizophrenia, are a consequence of delays or abnormalities in brain development. In children, the study of normal cognitive and brain development is best accomplished using non-invasive techniques that are not overly restrictive of movement and do not require ionizing radiation. Of available techniques, electroencephalography (EEG), particularly with the advent of high density sensor arrays, provides the ability to assess cognitive function safely and non-invasively. However, to provide functional localization of cognitively important brain regions and networks requires an accurate model of head tissue geometry and conductivity, particularly in the first years of life, when skull and brain change rapidly in composition and size. This Phase I project will create age-group head models based on measured conductivity values of skull and brain for five age groups to determine when changes in head shape, size and composition significantly impact the ability to accurately localize seizure activity. By introducing advanced computational resources for creating patient-specific head models, we will allow to optimize the use of non-invasive dense-array EEG to elucidate the developmental trajectory of neural networks underlying cognition in normal children.

Public Health Relevance

The product innovation proposed in this project will create age-group pediatric head models for neuroimaging . By introducing advanced computational resources for creating age-specific child head models, this technology will provide clinicians and researchers with a tool for optimal use of non-invasive high density EEG in localizing seizure activities and elucidating the developmental trajectory of neural networks underlying cognition in normal children.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43NS067726-01
Application #
7801229
Study Section
Special Emphasis Panel (ZRG1-SBIB-U (92))
Program Officer
Fertig, Stephanie
Project Start
2010-03-01
Project End
2012-02-28
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
1
Fiscal Year
2010
Total Cost
$346,632
Indirect Cost
Name
Electrical Geodesics, Inc.
Department
Type
DUNS #
809845365
City
Eugene
State
OR
Country
United States
Zip Code
97403
Ghenbot, Rahel G; Patel, Kamlesh B; Skolnick, Gary B et al. (2015) Effects of open and endoscopic surgery on skull growth and calvarial vault volumes in sagittal synostosis. J Craniofac Surg 26:161-4
Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej et al. (2014) A 3D finite-difference BiCG iterative solver with the Fourier-Jacobi preconditioner for the anisotropic EIT/EEG forward problem. Comput Math Methods Med 2014:426902
Smith, Kirk; Politte, David; Reiker, Gregory et al. (2013) Automated measurement of skull circumference, cranial index, and braincase volume from pediatric computed tomography. Conf Proc IEEE Eng Med Biol Soc 2013:3977-80
Smith, Kirk; Politte, David; Reiker, Gregory et al. (2012) Automated measurement of pediatric cranial bone thickness and density from clinical computed tomography. Conf Proc IEEE Eng Med Biol Soc 2012:4462-5
Politte, David; Prior, Fred; Ponton, Curtis et al. (2010) Sources of non-physiologic noise in simultaneous EEG-fMRI data: a phantom study. Conf Proc IEEE Eng Med Biol Soc 2010:5129-32