Barrett's esophagus (BE) is an acquired condition of the lower esophagus in which the normal squamous tissue is replaced by a metaplastic columnar mucosa. BE itself is not malignant, but it is the primary risk factor for esophageal adenocarcinoma, and a significant number of patients with BE will have adenocarcinoma at the time of first endoscopy. Currently, examination for dysplasia requires numerous random biopsy samples. This work will complete the development and clinically test an optical instrument for detecting and grading Barrett's dysplasia. Light scattering spectroscopy (LSS) has already been shown to differentiate between normal and diseased tissue conditions in BE patients, but the analysis is complex so the data is analyzed after the procedure is over. The instrument developed by this work will be based on white light LSS, but it will use a special probe design and data reduction algorithm, developed by NLI, enabling real-time results. The probe design makes use of the properties of light scattering by cell nuclei and other tissue components to enable the separation and subtraction of interfering effects, and the characterization of the nuclei, based on using spectral, angular, and polarization characteristics of the scattering processes. The tissue characterization follows from the instrument's quantitative determination of the nuclear size and number density for the surface mucosal cells - two properties commonly used by pathologists. Specifically, NLI will (i) produce the probe, (ii) calculate the data base for the real-time algorithm, (iii) produce the instrument with light source, spectrometer, and embedded computer (suitable for interface with a standard clinical video endoscope), (iv) verify the instrument operation in the laboratory using standard scattering materials, (v) verify the background subtraction properties by using normal and diseased resected colon tissue, and (vi) conduct clinical studies on patients with Barrett's Esophagus.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
2R44CA081800-02A2
Application #
6583122
Study Section
Special Emphasis Panel (ZRG1-SSS-8 (10))
Program Officer
Song, Min-Kyung H
Project Start
1999-06-04
Project End
2004-09-29
Budget Start
2002-09-30
Budget End
2003-09-29
Support Year
2
Fiscal Year
2002
Total Cost
$373,879
Indirect Cost
Name
Newton Laboratories
Department
Type
DUNS #
959348673
City
Belmont
State
MA
Country
United States
Zip Code
02478