The availability of safe drinking water is a significant health concern. The introduction of chlorination as a disinfection method caused a large drop in mortality from water borne diseases and was considered a major public health advance. Unfortunately, disinfection byproducts (DPBs) are formed when chlorine and other disinfectants are used in water treatment plants. Many disinfection byproducts can have serious health effects and are potential carcinogens. Current treatment options to minimize DPBs in drinking water are either inadequate or too costly to implement. A potential means to combat exposure to DPBs is through the widespread implementation of treatment methods near to the place where water is consumed (i.e., point-of-use treatment). In Phase I, we demonstrated a point-of-use water treatment device based on photocatalytic oxidation. The method has a high potential to degrade DPBs to benign end products and provide safe drinking water at a cost lower than current treatment options. Significant accomplishments of the Phase I study included demonstration of the device's potential for mass production as well as its multiple applications, including control of microbial contaminants. The Phase II will focus on optimization of the device's design and capabilities.

Proposed Commercial Applications

There are many economic advantages to the point-of-use water purification method described in this proposal. The proposed device can be used as a stand alone treatment method, or its commercial potential may be enhanced by integrating it with siilar water purification devices that are used by millions of consumers in the U.S. The market opportunity is substantial, given the large number of point-of-use devices that are used in health care facilities, homes, restaurants, food service establishments and hotels. The market is estimated to be worth over $1.5 billion annually in the U.S. Lynntech is well positioned to commercialize this technology, having secured intellectual property covering many aspects of the invention. Additionally, Lynntech's management team is experienced in commercializing new technology related to water treatment, healthcare and consumer products.

Proposed Commercial Applications

There are many economic advantages to the point-of-use water purification method described in this proposal

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
2R44ES010527-02
Application #
6444884
Study Section
Special Emphasis Panel (ZRG1-SSS-3 (10))
Program Officer
Heindel, Jerrold
Project Start
2000-06-01
Project End
2004-05-31
Budget Start
2002-09-01
Budget End
2003-05-31
Support Year
2
Fiscal Year
2002
Total Cost
$431,825
Indirect Cost
Name
Lynntech, Inc.
Department
Type
DUNS #
184758308
City
College Station
State
TX
Country
United States
Zip Code
77845