Radio frequency (RF) catheter ablation is an established treatment for patients with cardiac arrhythmias. RF ablation of atrio-ventricular nodal reentrant arrhythmias has been highly successful, since the known anatomy of the atrio-ventricular node enables precise identification of the site of origin of the arrhythmia and thus delivery of the ablative energy. Ablation of ventricular tachycardia (VT) presents a greater challenge, since the origin of the arrhythmia could be anywhere in the ventricles, and existing techniques used to locate the site usually require that patients be maintained in arrhythmia for a significant period of time. These factors combine to limit the procedure primarily to treatment of slow VTs in patients who are hemodynamically stable during arrhythmia. In Phase I of this Fast-Track project, concept feasibility will be demonstrated for a new catheter guidance system that will direct the tip of an ablation catheter to the site of origin of an arrhythmia and reduce the time needed to locate the site such that a patient need only be maintained in the arrhythmia for a few beats. The system will feature an innovative """"""""inverse algorithm"""""""" analysis code that uses a single equivalent moving dipole (SEMD) to model both electrocardiograph (EGG) potentials from body-surface electrodes and the current pulses delivered from the tip of an ablation catheter. By processing body surface potentials during a few beats of VT, the system will identify the SEMD location that corresponds to the source of the arrhythmia when the bioelectrical source is most localized. Using the same algorithm, it will then identify, in real time, the location of the catheter tip from analysis of potentials resulting from low-energy dipolar current pulses delivered to electrodes located at the tip. The system will also include a real-time graphical display that will allow a clinician to quickly guide the catheter tip to the source of the arrhythmia for precise delivery of RF energy. Even in the presence of realistic levels of noise in the ECG signals, preliminary work has shown that estimation of the SEMD location from body surface potentials is a breakthrough innovation that will allow for precise, rapid guidance of ablation catheters to arrhythmic foci. Phase I will prove feasibility in a breadboard system developed to demonstrate the ability to guide an ablation catheter to the location of an electrical source within a phantom torso. This work will serve as the foundation for development and in-vivo test of a full prototype guidance system in Phase II.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
5R44HL079726-03
Application #
7290923
Study Section
Special Emphasis Panel (ZRG1-CVS-K (10))
Program Officer
Lathrop, David A
Project Start
2006-09-30
Project End
2008-08-31
Budget Start
2007-09-01
Budget End
2008-08-31
Support Year
3
Fiscal Year
2007
Total Cost
$570,495
Indirect Cost
Name
Infoscitex Corporation
Department
Type
DUNS #
004627316
City
Waltham
State
MA
Country
United States
Zip Code
02451
Sohn, Kwanghyun; Lv, Wener; Lee, Kichang et al. (2014) The single equivalent moving dipole model does not require spatial anatomical information to determine cardiac sources of activation. IEEE J Biomed Health Inform 18:222-30
Sohn, Kwanghyun; Lv, Wener; Lee, Kichang et al. (2014) A method to noninvasively identify cardiac bioelectrical sources. Pacing Clin Electrophysiol 37:1038-50
Lee, Kichang; Lv, Wener; Ter-Ovanesyan, Evgeny et al. (2013) Cardiac ablation catheter guidance by means of a single equivalent moving dipole inverse algorithm. Pacing Clin Electrophysiol 36:811-22
Barley, Maya E; Armoundas, Antonis A; Cohen, Richard J (2009) A method for guiding ablation catheters to arrhythmogenic sites using body surface electrocardiographic signals. IEEE Trans Biomed Eng 56:810-9
Barley, Maya E; Choppy, Kristen J; Galea, Anna M et al. (2009) Validation of a novel catheter guiding method for the ablative therapy of ventricular tachycardia in a phantom model. IEEE Trans Biomed Eng 56:907-10