HLS17-12. The US FDA is considering to establish a new cardiac safety assessment approach de- fined by a new paradigm called, ?Comprehensive in vitro Proarrhythmia Assay (CIPA)?. The CIPA will 1) assess drug effects on each cardiac ion channel type individually using a high- throughput assay ion channel assays, 2) compute net effect on repolarization and risks for tor- sade pointes (TdP) using a mathematical model, and 3) confirm the computational prediction by measuring the drug?s effects on action potentials in induced pluripotent stem cell (iPSC) derived human cardiac myocytes (CMs). This paradigm shift, if successful, could reduce the cost of car- diac safety analyses by replacing or lowering the requirement to perform an expensive ($2-4 million) thorough QT study during clinical trials. Protecting consumers from drug induced ar- rhythmia and sudden deaths is a paramount importance for the regulators and pharmaceutical companies as well as lowing the cost of drug development. Many cardiac safety scientists, however, are skeptical about CIPA?s approach since CMs derived from human iPSCs exhibit a poor excitation-contraction coupling due to their immaturity. In addition, a proposed CIPA mathematical model was developed to simulate electrophysiology of human adult CMs, so there is a mismatch between experimental system and computational tool. To address these concerns, we proposed three specific aims in tw0 phases by following Fast- Track SBIR processes. Phase I feasibility Aim 1 will measure drug-induced changes in AP and CaT using human adult heart slices isolated from human donors. Here we will confirm our suc- cessful handling and analyzing human adult heart slices, which will be based on a recently pub- lished protocol by our collaborator, Dr. Igor Efimov, at George Washington University. After this validation, we will move on to perform the following two studies:
Aim 2. Compare drug-induced changes in AP and CaT in NuHearts generated from adult CMs and cardiac fibroblasts from same human donor hearts;
Aim 3. Validate and improve the computational models and train an artificial intelligence to predict cardiac safety risks of unknow compounds. After our successful completion proposed projects, we can establish an unprecedented cardiac safety assessment platform that can predict safety issues using a well-trained AI without doing any experiments using human heart slices that are rarely accessible for most of the safety labor- atories or biotech firms.

Public Health Relevance

Because nearly one third of drug candidates fails to reach market due to its cardiac safety concerns, a better safety assessment approach without increasing its cost is needed to improve productivity of pharmaceutical industry. The proposed project combines computational and experimental analyses of cardiac safety parameters using adult heart cells isolated from a donor heart and its stem cell derived heart muscle cells to build a better but cost-effective cardiac safety assessment system. A successfully validated system enables drug developers to arcuately predict a new drug?s cardiac safety profile by only running cost-effective experiments using stem cell derived heart muscle cells that are accessible to many drug developers.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
1R44HL139248-01A1
Application #
9555779
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Sopko, George
Project Start
2018-09-01
Project End
2019-02-28
Budget Start
2018-09-01
Budget End
2019-02-28
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Invivosciences, Inc.
Department
Type
DUNS #
610347713
City
Madison
State
WI
Country
United States
Zip Code
53719