The studies in Phase II continue the effort begun in Phase I to equip a commercially available stereology system (Stereologer) with image analysis capability to automatically sample and quantify features of biological interest in tissue sections. The investigators have adapted image analysis algorithms, developed in part by a collaborator's missile ballistic systems research program, into an auto-detection and auto-analysis program called Verified Computerized Stereoanalysis (VCS). Phase I demonstrated the ability of VCS to quantify size parameters of proliferating cells in tissue sections with equal accuracy to the gold standard (manual click) approach, but with a significant 8-fold improvement in throughput efficiency. Operationally, the VCS program acquires an internal target of color pixels associated with the feature of interest, while the user performs manual data collection for the first section from the initial case in the study. Once the user verifies an acceptable level of accuracy relative to manual data collection (gold standard), the program can be switched into fully automatic mode, a combination of motorized stage control for systematic-random sampling; auto-detection of stained microscopic features of interest; and, auto-analysis of global and local size parameters and their variation based on state-of-the-art stereological principles. These investigations found that biological features that label (stain) proteins with specific immunological-based probes, followed by amplification of the signal with chromogen reactions or fluorescence, stimulate the most robust response from the VCS algorithm. Phase II will expand VCS to the 3-D analysis of all 1st-order (number, length, surface area, and volume) and 2nd-order (variation, spatial distribution) stereological parameters (Aim 1); validate 3-D VCS against the gold standard approach and identify the principal tissue processing and staining procedures to increase algorithm robustness (Aim 2); and, develop StereoTutorials and on-line documentation to assist the conversion of current users of computerized stereology systems from manual to automatic VCS approaches (Aim 3). The long-term goal for VCS is to increase the throughput efficiency for stereoanalyses of parameters on tissue sections without a loss of accuracy; reduce research costs in terms of time and labor; and, accelerate scientific progress toward improvements in health and the management of disease. Solid evidence that the PI and colleagues can successfully commercialize the VCS program in Phase III is demonstrated by worldwide sales and support of the Stereologer and other stereology resources for the past decade. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
5R44MH076541-03
Application #
7197343
Study Section
Special Emphasis Panel (ZRG1-SBMI-F (11))
Program Officer
Grabb, Margaret C
Project Start
2003-07-10
Project End
2008-02-29
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
3
Fiscal Year
2007
Total Cost
$190,667
Indirect Cost
Name
Stereology Resource Center, Inc.
Department
Type
DUNS #
137488446
City
Chester
State
MD
Country
United States
Zip Code
21619
Mouton, Peter R; Phoulady, Hady Ahmady; Goldgof, Dmitry et al. (2017) Unbiased estimation of cell number using the automatic optical fractionator. J Chem Neuroanat 80:A1-A8
Manaye, Kebreten F; Mouton, Peter R; Xu, Guang et al. (2013) Age-related loss of noradrenergic neurons in the brains of triple transgenic mice. Age (Dordr) 35:139-47
Elozory, D T; Kramer, K A; Chaudhuri, B et al. (2012) Automatic section thickness determination using an absolute gradient focus function. J Microsc 248:245-59
Mouton, P R; Kelley-Bell, B; Tweedie, D et al. (2012) The effects of age and lipopolysaccharide (LPS)-mediated peripheral inflammation on numbers of central catecholaminergic neurons. Neurobiol Aging 33:423.e27-36
Courchesne, Eric; Mouton, Peter R; Calhoun, Michael E et al. (2011) Neuron number and size in prefrontal cortex of children with autism. JAMA 306:2001-10
Manaye, Kebreten F; Allard, Joanne S; Kalifa, Sara et al. (2011) 17?-estradiol attenuates neuron loss in ovariectomized Dtg A?PP/PS1 mice. J Alzheimers Dis 23:629-39
Mouton, Peter R; Chachich, Mark E; Quigley, Christopher et al. (2009) Caloric restriction attenuates amyloid deposition in middle-aged dtg APP/PS1 mice. Neurosci Lett 464:184-7
O'Neil, Jahn N; Mouton, Peter R; Tizabi, Yousef et al. (2007) Catecholaminergic neuronal loss in locus coeruleus of aged female dtg APP/PS1 mice. J Chem Neuroanat 34:102-7