Traumatic brain injury (TBI) is the leading cause of death and disability in the US with an incidence rate of 1.5 million at cost of $56.3 billion annually. There is no treatment for TBI, and the lack of therapeutic intervention for a public health issue of this magnitude constitutes a healthcare crisis. We have developed COG133, a peptide that is neuroprotective when administered 30 minutes following TBI in mice, and demonstrated that conjugation of COG133 to a variety of protein transduction domains (PTD- short basic peptides that promote the intracellular delivery of cargo) expanded the therapeutic window (TW, i.e., the injury-treatment interval capable of exhibiting neuroprotection) for the treatment of TBI four-fold, from 30 min to 120 min.
Specific Aim 1 : Determine the maximum tolerated dose (MTD) of antpCOG133 and synB3COG133 in intact mice;
Specific Aim 2 : Determine the effect of dose and length of the therapeutic window (120, 180, 240, and 300 minutes) on the efficacy of antpCOG133 and synB3COG133 for the treatment of TBI in mice;
Specific Aim 3 : Determine the pharmacokinetic and pharmacodynamic (PK/PD) parameters of antpCOG133 and synB3COG133 in the blood and brain of uninjured mice via liquid chromatography/ mass spectrometry (LC/MS) at multiple time points following intravenous administration;
Specific Aim 4 : The patho-physiological features and sequelae of TBI impact drug delivery to the brain due to changes in cerebral blood flow, metabolism, edema, and changes in proteolytic and degradative enzyme activity. Therefore, the impact of TBI on the blood and brain PK/PD of antpCOG133 and synB3COG133 will be investigated as a function of time elapsed since injury. A comprehensive assessment of the PK/PD of PTD-cargo in a clinically relevant in vivo model of neurological disease is lacking in the literature and will advance the general state of knowledge regarding the clinical/therapeutic utility of harnessing the transduction potential of PTDs for the treatment of numerous neurological disorders. The lack of an effective therapeutic intervention for the 1.5 million patients affected by TBI annually justifies this development effort to translate the therapeutic potential of PTDs to the clinic and to the market.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
2R44NS048689-02
Application #
7054029
Study Section
Special Emphasis Panel (ZRG1-BDCN-F (11))
Program Officer
Hicks, Ramona R
Project Start
2004-05-15
Project End
2008-08-31
Budget Start
2005-09-30
Budget End
2006-08-31
Support Year
2
Fiscal Year
2005
Total Cost
$276,926
Indirect Cost
Name
Cognosci, Inc.
Department
Type
DUNS #
141881727
City
Research Triangle Park
State
NC
Country
United States
Zip Code
27709
Kaufman, Nicholas A; Beare, Jason E; Tan, Arlene A et al. (2010) COG1410, an apolipoprotein E-based peptide, improves cognitive performance and reduces cortical loss following moderate fluid percussion injury in the rat. Behav Brain Res 214:395-401
Sarantseva, S V; Bol'shakova, O I; Timoshenko, S I et al. (2009) [Protein transduction domain peptide mediates delivery to the brain via the blood-brain barrier in Drosophila]. Biomed Khim 55:41-9
Hoane, Michael R; Kaufman, Nicholas; Vitek, Michael P et al. (2009) COG1410 improves cognitive performance and reduces cortical neuronal loss in the traumatically injured brain. J Neurotrauma 26:121-9
Shvartsman, A L; Sarantseva, S V; Solov'ev, K V et al. (2008) [Degeneration of growth cones in a culture of embryonic neurons of mouse with presenilin 1 gene knockout] Biofizika 53:1008-13
Hoane, Michael R; Pierce, Jeremy L; Holland, Michael A et al. (2007) The novel apolipoprotein E-based peptide COG1410 improves sensorimotor performance and reduces injury magnitude following cortical contusion injury. J Neurotrauma 24:1108-18