The objective of this methodological study is to develop and systematically test predictive models of an individual's alcohol consumption. The ability to forecast alcohol consumption in patients can potentially help individualized treatment programs. For binge drinkers, predicting the timing of their next episode provides additional awareness that could help to control, or even to prevent, the entire episode. For heavy drinkers, predictive models can forecast the windows of treatment opportunity when the patient is most sober and responsive to intervention. For those who are attempting to quit drinking, forecasting the next relapse episode could be used to trigger motivational interviewing or other timely interventions that will help to prevent the relapse. In this project, we will analyze two datasets containing long time series'(i.e., 2 years and 6 months) of individual daily records of alcohol use, stress, and other factors. We will adapt innovative predictive models developed to forecast future alcohol consumption, as well as identify and explain a variety of daily use patterns. The data on individual alcohol consumption is very limited, and this is the first study aimed at building forecasting models using such data. This study offers the field a """"""""next step,"""""""" with an innovative analysis approach that can possibly offer clinical implications for relapse prevention, increased treatment efficiency, and enhanced understanding of the factors driving the variety of daily patterns of use.

Public Health Relevance

The data on daily individual alcohol consumption are critical for understanding alcohol abuse/addiction. This study is the first one to build forecasting models using such data. This study offers the field a next step, with an innovative analysis approach that can possibly offer clinical implications for relapse prevention, increased treatment efficiency, and enhanced understanding of the factors driving the variety of daily patterns of use.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
High Impact Research and Research Infrastructure Programs—Multi-Yr Funding (RC4)
Project #
3RC4AA020096-01S1
Application #
8307194
Study Section
Special Emphasis Panel (ZRG1-HDM-C (56))
Program Officer
Lowman, Cherry
Project Start
2010-09-30
Project End
2013-09-29
Budget Start
2011-08-12
Budget End
2013-09-29
Support Year
1
Fiscal Year
2011
Total Cost
$49,723
Indirect Cost
Name
Research Triangle Institute
Department
Type
DUNS #
004868105
City
Research Triangle
State
NC
Country
United States
Zip Code
27709
Aldridge, Arnie P; Zarkin, Gary A; Dowd, William N et al. (2016) The Relationship Between End-of-Treatment Alcohol Use and Subsequent Healthcare Costs: Do Heavy Drinking Days Predict Higher Healthcare Costs? Alcohol Clin Exp Res 40:1122-8
Kampov-Polevoy, Alexey; Lange, Leslie; Bobashev, Georgiy et al. (2014) Sweet-liking is associated with transformation of heavy drinking into alcohol-related problems in young adults with high novelty seeking. Alcohol Clin Exp Res 38:2119-26
Garge, Nikhil R; Bobashev, Georgiy; Eggleston, Barry (2013) Random forest methodology for model-based recursive partitioning: the mobForest package for R. BMC Bioinformatics 14:125