Memory impairment and cognitive deficits are the most prominent feature of Alzheimer?s disease (AD); hence, current AD research has focused predominantly on CNS regions related to learning and memory, such as the hippocampus. However, one of the most consistently reported phenotypes in AD patients is weight loss, which may precede memory loss and cognitive decline by as much as 17 years, raising the question of whether hypothalamic dysfunction is an early cause of AD or merely coincident with disease onset? We propose that hypothalamic dysfunction during the preclinical stage of AD is an early causative step in a cascade of events culminating in dementia, which arises from complex interactions between genetic and environmental (GxE) risk factors that include diet and obesity. Our overall objective is to discover genetic variants and networks that modulate body weight across the lifespan, a clinically relevant biomarker of hypothalamic dysfunction that is predicative of cognitive status later in life. To this end, in Aim 1 we will use a novel mouse panel that incorporates high-risk human FAD mutations on a segregated background of genetic diversity (BXD panel) to identify modifiers that contribute to variation in body weight that is associated with cognitive decline.
In Aim 2, we will identify genetic variants that modulate susceptibility to HFD, and derive directed networks and molecular pathways mediating the impact of diet and obesity on AD symptoms via causal inference analysis.
In Aim 3, we will evaluate a priori candidates Igf1r, Esr2, and Apbb2 and up to 10 candidates from Aims 1 and 2, establishing the feasibility and independence of Aims. Successful completion of these aims will yield critical new insight into the pathogenesis of AD, including how modifiable environmental factors influence susceptibility and risk. Our deliverables include potential new biomarkers for early detection and new therapeutic strategies targeting the very earliest preclinical stages of the disease to delay or even prevent AD.

Public Health Relevance

For a patient diagnosed today with Alzheimer?s disease (AD), no treatments exist to prevent, slow, or halt disease progression. There is an urgent need for effective therapies that target the earliest changes underlying AD ? but this requires a better understanding of the early pathological changes during the ?asymptomatic? stage that include changes in body weight, which is presently still lacking. The proposed research is relevant to public health because understanding genetic and environmental factors that mediate the earliest clinical manifestations of Alzheimer's disease, and how this differs from normal aging, is important for identifying new strategies to delay or prevent AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Multi-Year Funded Research Project Grant (RF1)
Project #
3RF1AG059778-01S1
Application #
9969904
Study Section
Program Officer
Mackiewicz, Miroslaw
Project Start
2018-08-01
Project End
2023-03-31
Budget Start
2020-06-15
Budget End
2023-03-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609