A cell is a highly complex system with distributed molecular physiologies in structured sub- cellular compartments whose interplay with the nuclear genome determine the functional characteristics of the cell. A classic example of distributed genomic processes is found in neurons. Learning and memory requires modulation of individual synapses through RNA localization, localized translation, and localized metabolites such as those from dendritic mitochondria. Dendrites of neurons integrate distributed synaptic signals into both electrical and nuclear transcriptional response. Dysfunction of these distributed genomic functions in neurons can result in a broad spectrum of neuropsychiatric diseases such as bipolar and depressive disorders, autism, among others. Understanding complex genomic interactions within a single cell requires new technologies: we need nano-scale ability to make genome-wide measurements at highly localized compartments and to effect highly localized functional genomic manipulations, especially in live tissues. To address this need, we propose to establish a Center for Sub-Cellular Genomics using neurons as model systems. The center will develop new optical and nanotechnology approaches to isolate sub-cellular scale components for genomic, metabolomics, and lipidomic analyses. The center will also develop new mass spectrometry methods, molecular biology methods, and informatics models to create a platform technology for sub-cellular genomics.
Many human diseases, especially neuropsychiatric diseases, can be traced to dysfunction of organelles and other sub-cellular components. This project will create novel technologies to study function and dysfunction of sub-cellular processes and apply them to study of neurons.