Theoretical studies of the reactivity of the anthracycline family of drugs will be undertaken using the AM1 formalism. The thrust of these studies is to gain insight from quantum chemistry/pharmacology, molecular modeling and statistical inference to understand molecular-level features that govern chemical reactivity but are concealed by the molecular structure and raw experimental data (Ref. 40). Tautomers, radicals/biradicals, possible intermediates and metabolites, metal complexes, etc. will be examined. Optimized geometries will be obtained and the relative stabilities will be determined on the basis of charge distribution, molecular orbital structures, etc. Relative reactivities will be probed using calculated molecular orbital energies (of HOMO, LUMO, SOMO). The origins of the relative stabilities and reactivities will be examined by energy- partitioning analysis. The computed electronic properties will be used, along with available experimental data, for QSAR/CoMFA studies to develop structure/activity (S/A) relationships. The S/A relationships developed this way will in turn be used to predict the biological activity of theoretical models - not-yet-synthesized drugs. Other studies will include reaction profiles/surfaces of models for formation of metabolites, conformational searches/minimum energy path calculations, transition state location, electron transfer reactions (metal to ligand and vice versa) by Mulliken population analysis, etc.

Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Clark Atlanta University
Department
Type
DUNS #
065325177
City
Atlanta
State
GA
Country
United States
Zip Code
30314
Ifere, Godwin O; Equan, Anita; Gordon, Kereen et al. (2010) Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene. Cancer Epidemiol 34:461-71
Mariam, Yitbarek H; Musin, Ryza N (2008) Transition from moderate to strong hydrogen bonds: its identification and physical bases in the case of O-H...O intramolecular hydrogen bonds. J Phys Chem A 112:134-45
Kimbro, K Sean; Duschene, Kaitlin; Willard, Margeret et al. (2008) A novel gene STYK1/NOK is upregulated in estrogen receptor-alpha negative estrogen receptor-beta positive breast cancer cells following estrogen treatment. Mol Biol Rep 35:23-7
Chu, Qinghui; Pang, Yi (2004) Vibronic structures in the electronic spectra of oligo(phenylene ethynylene): effect of m-phenylene to the optical properties of poly(m-phenylene ethynylene). Spectrochim Acta A Mol Biomol Spectrosc 60:1459-67
Sannigrahi, Biswajit; McGeady, Paul; Khan, Ishrat M (2004) Helical poly(3-methyl-4-vinylpyridine)/amino acid complexes: preparation, characterization, and biocompatibility. Macromol Biosci 4:999-1007
Liang, Sidney; Bu, Xiu R (2002) Tertiary pentyl groups enhance salen titanium catalyst for highly enantioselective trimethylsilylcyanation of aldehydes. J Org Chem 67:2702-4
Vanderveer, Donald; Colon, Marisabel Lebron; Bu, Xiu R (2002) Crystal structure of a chiral Ni complex: (R,R)-N,N'-bis(3-t-butylsalicylidene)-1,2-cyclohexanediaminonickel(II). Anal Sci 18:1283-4
Musey, Paul I; Ibim, Sobrasua M; Talukder, Niranjan K (2002) Development of artificial blood vessels: seeding and proliferation characteristics of endothelial and smooth muscle cells on biodegradable membranes. Ann N Y Acad Sci 961:279-83
Chiang, C F; Okou, D T; Griffin, T B et al. (2001) Green fluorescent protein rendered susceptible to proteolysis: positions for protease-sensitive insertions. Arch Biochem Biophys 394:229-35
Johnson, K P; Rowe, G C; Jackson, B A et al. (2001) Novel antineoplastic isochalcones inhibit the expression of cyclooxygenase 1,2 and EGF in human prostate cancer cell line LNCaP. Cell Mol Biol (Noisy-le-grand) 47:1039-45

Showing the most recent 10 out of 17 publications