A new training grant (T32) for post-doctoral fellows in Genetics and Genomics of Muscle is described. Training faculty are drawn from Children's National Medical Center and University of Maryland. Research and training topics include muscular dystrophy, exercise physiology, muscle regeneration, and pre-clinical and clinical trials. Technological training Is in genome-enabled studies of muscle, such as genome-wide SNP association studies (GWAS), mRNA profiling, proteomic profiling, and systems biology. This technological bench training is heavily augmented with training in bioinformatics and statistics, and appropriate conduct of research. The proposed T32 is unique in the translational training for muscle in health and disease, with extensive pre-clinical and clinical trials. Integrative and systems biology are strengths of the preceptors, with extensive bioinformatics, statistics, and human/computer visualization training available to fellows. The proposed training program includes both didactic training in interdisciplinary approaches, as well as hands-on laboratory and computational training. The proposed training faculty are supported by a strong portfolio of investigator-initiated individual research grants and awards. A unique advantage of the proposed training program is the foundation of federally-funded Center and Core grants on muscle translational research that would provide rich core facilities and pilot funding opportunities for the proposed T32 fellows. These include a National Center for Medical Rehabilitation Research, Pediatric Pharmacology Research Unit, Wellstone Muscular Dystrophy Center, Cooperative International Neuromuscular Research Group clinical trial network, Department of Defense Program Project in Translational Research in the Muscular Dystrophies, and an Intellectual and Developmental Disabilities Center.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32AR056993-05
Application #
8655789
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Boyce, Amanda T
Project Start
2010-05-28
Project End
2015-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Children's Research Institute
Department
Type
DUNS #
City
Washington
State
DC
Country
United States
Zip Code
20010
Akpulat, Ugur; Wang, Haicui; Becker, Kerstin et al. (2018) Shorter Phosphorodiamidate Morpholino Splice-Switching Oligonucleotides May Increase Exon-Skipping Efficacy in DMD. Mol Ther Nucleic Acids 13:534-542
Novak, James S; Jaiswal, Jyoti K; Partridge, Terence A (2018) The macrophage as a Trojan horse for antisense oligonucleotide delivery. Expert Opin Ther Targets 22:463-466
Boehler, Jessica F; Hogarth, Marshall W; Barberio, Matthew D et al. (2017) Effect of endurance exercise on microRNAs in myositis skeletal muscle-A randomized controlled study. PLoS One 12:e0183292
Echigoya, Yusuke; Lim, Kenji Rowel Q; Trieu, Nhu et al. (2017) Quantitative Antisense Screening and Optimization for Exon 51 Skipping in Duchenne Muscular Dystrophy. Mol Ther 25:2561-2572
Hubal, Monica J; Nadler, Evan P; Ferrante, Sarah C et al. (2017) Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity (Silver Spring) 25:102-110
Novak, James S; Hogarth, Marshall W; Boehler, Jessica F et al. (2017) Myoblasts and macrophages are required for therapeutic morpholino antisense oligonucleotide delivery to dystrophic muscle. Nat Commun 8:941
Kahle, Kristopher T; Flores, Bianca; Bharucha-Goebel, Diana et al. (2016) Peripheral motor neuropathy is associated with defective kinase regulation of the KCC3 cotransporter. Sci Signal 9:ra77
Coley, William D; Bogdanik, Laurent; Vila, Maria Candida et al. (2016) Effect of genetic background on the dystrophic phenotype in mdx mice. Hum Mol Genet 25:130-45
Punetha, Jaya; Kesari, Akanchha; Uapinyoying, Prech et al. (2016) Targeted Re-Sequencing Emulsion PCR Panel for Myopathies: Results in 94 Cases. J Neuromuscul Dis 3:209-225
Harris, Elizabeth; Bladen, Catherine L; Mayhew, Anna et al. (2016) The Clinical Outcome Study for dysferlinopathy: An international multicenter study. Neurol Genet 2:e89

Showing the most recent 10 out of 28 publications