Modern drug discovery and development require the training of scientists who understand the molecular, physiological and quantitative basis of drug action and specificity, and who can apply modern technologies and concepts to the development of novel therapeutic strategies. This multidisciplinary doctoral training program in the Pharmacological Sciences is designed to help meet that demand by preparing students for biomedical research careers in schools of medicine, dentistry and pharmacy, in research institutes, and in governmental or industrial laboratories. The most important component of training is laboratory research, first as a series of research rotations, then in the dissertation laboratory. This training is complemented by a core course that integrates the theoretical and experimental foundations of modern biological sciences;core courses in pharmacology that emphasize quantitative analysis of drug action, pharmacokinetics, drug disposition, biostatistics and experimental design;advanced courses in specialty areas;seminar courses and journal clubs. Emphasis throughout is placed on development and refinement of communication and analytical skills. The 43 training faculty represent 8 basic science and 6 clinical departments or Centers at Emory, and two Departments at Georgia Tech., providing a wealth of diverse research training opportunities. Their research foci can be loosely grouped in four broad areas: transmembrane signaling, cell growth control and molecular recognition, substance abuse and behavioral pharmacology, and molecular toxicology. This Program currently supports six students each year, who are selected mainly from a pool of approximately 35 eligible students in the Molecular and Systems Pharmacology (MSP) Program. Six slots are requested in this renewal. Graduates will have acquired broad familiarity with pharmacology, knowledge in depth in the area of dissertation research, and the technical, communicative and analytical skills necessary to pursue an independent research career. Students graduate an average of 5.2 years after matriculation. The research conducted by the trainees in this program will advance our knowledge of disease processes and contribute to development of novel and improved therapeutic strategies that will benefit the health of our citizens. By preparing young scientists to contribute to and lead the nation's efforts in these areas, this training program will help to ensure that our ability to improve the nation's health remains strong in the future.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008602-14
Application #
7898937
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
1996-07-01
Project End
2012-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
14
Fiscal Year
2010
Total Cost
$262,406
Indirect Cost
Name
Emory University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Gibb, Alasdair J; Ogden, Kevin K; McDaniel, Miranda J et al. (2018) A structurally derived model of subunit-dependent NMDA receptor function. J Physiol 596:4057-4089
Collins, Jeffrey M; Walker, Douglas I; Jones, Dean P et al. (2018) High-resolution plasma metabolomics analysis to detect Mycobacterium tuberculosis-associated metabolites that distinguish active pulmonary tuberculosis in humans. PLoS One 13:e0205398
Hansen, Kasper B; Yi, Feng; Perszyk, Riley E et al. (2018) Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 150:1081-1105
Gurbani, Saumya S; Schreibmann, Eduard; Maudsley, Andrew A et al. (2018) A convolutional neural network to filter artifacts in spectroscopic MRI. Magn Reson Med 80:1765-1775
Hu, Xin; Chandler, Joshua D; Orr, Michael L et al. (2018) Selenium Supplementation Alters Hepatic Energy and Fatty Acid Metabolism in Mice. J Nutr 148:675-684
Flynn, Autumn R; Mays, Suzanne G; Ortlund, Eric A et al. (2018) Development of Hybrid Phospholipid Mimics as Effective Agonists for Liver Receptor Homologue-1. ACS Med Chem Lett 9:1051-1056
Gerber, Kyle J; Squires, Katherine E; Hepler, John R (2018) 14-3-3? binds regulator of G protein signaling 14 (RGS14) at distinct sites to inhibit the RGS14:G?i-AlF4- signaling complex and RGS14 nuclear localization. J Biol Chem 293:14616-14631
Raikar, Sunil S; Fleischer, Lauren C; Moot, Robert et al. (2018) Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antigen binding domains in NK and CRISPR-edited T cell lines. Oncoimmunology 7:e1407898
Squires, Katherine E; Gerber, Kyle J; Pare, Jean-Francois et al. (2018) Regulator of G protein signaling 14 (RGS14) is expressed pre- and postsynaptically in neurons of hippocampus, basal ganglia, and amygdala of monkey and human brain. Brain Struct Funct 223:233-253
Mitchell, Sabrina L; Uppal, Karan; Williamson, Samantha M et al. (2018) The Carnitine Shuttle Pathway is Altered in Patients With Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 59:4978-4985

Showing the most recent 10 out of 176 publications