This application is for continued support of the Translational Biology and Molecular Medicine (TBMM) graduate program at Baylor College of Medicine (BCM). The TBMM program was founded in 2004 based on the strategic plan of the College to establish new interdisciplinary programs that will drive a new model of integration of biomedical research, clinical patient care and education. The first TBMM class matriculated in 2005 and there are currently 62 students in the program and 33 total graduates. The program counts over 200 participating faculty, of which a core group of 127 are current T32-training faculty. The interdisciplinary faculty members have their primary appointments in 7 clinical and 8 basic science departments and offer research opportunities to T32-trainees in a variety of translational biomedical research areas. The major goal of the TBMM program is to train biomedical PhD scientists to work at the interface of basic and clinical research and more effectively exploit the findings of basic and clinical research to improve human health. To achieve this goal, we have during the prior funding period continue to enhance an established (now in its 9th year) unique PhD program with an innovative curriculum and dual mentorship by a basic science mentor and a clinical mentor of research projects that incorporate biomedical sciences with pathophysiology and medical principles. Although still early since inception, our outcomes data begin to show that we have been successful in recruiting and educating students who graduate with a solid education in basic science, pathophysiology and clinical translational research, prepared to become independent investigators performing translational research at the interface between basic and clinical medicine. Students publish their thesis research in high-impact journals in their respective areas and the program is also promoting interdisciplinary translational research through student-driven collaborations between basic and clinical science mentors. Supported by our growing applicant pool and current student body, we are requesting a total of eight funded positions, an increase from our 6 currently funded positions. Motivated by success of this approach in the prior cycle, we request this funding will again support students in their second and third years of graduate school when they are involved in clinical training as well as pursuing their translational research projects. This funding will allow the TBMM program to continue to mature and graduate translational researchers, who are beginning to make a difference in the field of translational research in academic and non-academic careers. It will also allow us to continue to promote and document ways of effective interaction between basic and clinical investigators and to successfully train a new type of PhD graduate to fill the nationa need to lead future translational research efforts.

Public Health Relevance

We are applying for continued funding to support students in the interdepartmental Graduate Program in Translational Biology and Molecular Medicine at Baylor College of Medicine. Now in its 10th year, this program offers unique translational research training in molecular medicine by combining basic biomedical and translational science course work with a translational thesis research project under guidance of dual mentorship by a basic science and clinical research mentor for each student. The ultimate goal of educating a highly skilled workforce, poised to become future research leaders who can efficiently navigate between bench and bedside to translate molecular discoveries from the lab to the clinic or develop molecular research strategies at the bench for solving important human health problems, is highly relevant to the molecular medicine training program goals and to public health in general.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM088129-10
Application #
9732524
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Krasnewich, Donna M
Project Start
2010-07-01
Project End
2020-06-30
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
10
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Call, Lee; Stoll, Barbara; Oosterloo, Berthe et al. (2018) Metabolomic signatures distinguish the impact of formula carbohydrates on disease outcome in a preterm piglet model of NEC. Microbiome 6:111
Tanner, Mark R; Pennington, Michael W; Chamberlain, Brayden H et al. (2018) Targeting KCa1.1 Channels with a Scorpion Venom Peptide for the Therapy of Rat Models of Rheumatoid Arthritis. J Pharmacol Exp Ther 365:227-236
Matsunuma, Ryoichi; Chan, Doug W; Kim, Beom-Jun et al. (2018) DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc Natl Acad Sci U S A 115:E11978-E11987
Scovell, Jason M; Khera, Mohit (2018) Testosterone Replacement Therapy Versus Clomiphene Citrate in the Young Hypogonadal Male. Eur Urol Focus 4:321-323
Johnston, A N; Bu, W; Hein, S et al. (2018) Hyperprolactinemia-inducing antipsychotics increase breast cancer risk by activating JAK-STAT5 in precancerous lesions. Breast Cancer Res 20:42
Byrd, Tiara T; Fousek, Kristen; Pignata, Antonella et al. (2018) TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res 78:489-500
Conley, Zachary C; Bodine, Truston J; Chou, Andrew et al. (2018) Wicked: The untold story of ciprofloxacin. PLoS Pathog 14:e1006805
Thirumavalavan, Nannan; Scovell, Jason M; Link, Richard E et al. (2018) Does Solid Organ Transplantation Affect Male Reproduction? Eur Urol Focus 4:307-310
Krzykawska-Serda, Martyna; Agha, Mahdi S; Ho, Jason Chak-Shing et al. (2018) Chemotherapy and Radiofrequency-Induced Mild Hyperthermia Combined Treatment of Orthotopic Pancreatic Ductal Adenocarcinoma Xenografts. Transl Oncol 11:664-671
Gates, Leah A; Gu, Guowei; Chen, Yue et al. (2018) Proteomic profiling identifies key coactivators utilized by mutant ER? proteins as potential new therapeutic targets. Oncogene 37:4581-4598

Showing the most recent 10 out of 116 publications