The mission of the proposed ?Chemistry of Life Processes (CLP) Predoctoral Training Program? is to educate the next generation of transdisciplinary scientists that will be capable of extending and integrating the perspectives and approaches of the life sciences and chemistry to complex scientific problems in the field of biomedical research. The complex problems encountered across length and time scales in treating disease require a broad repertoire of skills along with the capacity to harness teams possessing a range of diverse expertise to advance the discovery of new therapeutics and diagnostics. In order to address the pressing public health needs of the 21st century, the next generation of researchers must be able to think and communicate in a common language that spans chemistry and biology. Renewal of the CLP Predoctoral Training Program will address this need by providing Northwestern University graduate students with the opportunity to integrate graduate studies in chemistry and the life sciences to a degree beyond that of any training program currently active at Northwestern University. The depth and breadth of its coursework requirements, novel immersive cross-disciplinary lab experience, and unique mentoring structure of the CLP program, coupled with a strong shared training environment, set this program apart from other Northwestern training programs in biomedical research. The program is built upon the highly collaborative, transdisciplinary biomedical research programs of 49 mentors with extensive expertise in the areas of drug development, synthetic biology, and potential molecular targets for therapeutic intervention. This application requests support for a total of 40 training slots over five years to create a vibrant cohort of peers with a common identity in sufficient numbers to support student-driven program activities. Trainees are appointed to the grant starting in the fall of their second year and are supported throughout the course of the second and third years of graduate education. Eight students will be supported annually in years 01-05. Ten additional students will be supported by one-year university fellowships. Northwestern's Chemistry of Life Processes Institute, the administrative home of the proposed training program, provides CLP trainees with a robust ecosystem for transdisciplinary research and training that is comprised of a highly collaborative team of faculty that span chemistry and the life sciences, unique shared resources that provide a seamless pipeline for drug discovery and development, an enabling infrastructure with expertise in development and management of education and training programs, extensive experience in translation of discoveries for the good of society, and a physical environment that drives transdisciplinary collaboration and interaction.

Public Health Relevance

The proposed institutional training program will support integrated, cross-disciplinary education and training of chemistry and biology graduate students with the goal of providing them with the tools and perspectives needed to address the complex problems that are at the center of 21st century biomedical research.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM105538-08
Application #
9965951
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Fabian, Miles
Project Start
2013-07-01
Project End
2023-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
8
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
160079455
City
Chicago
State
IL
Country
United States
Zip Code
60611
Riley, Nicholas M; Sikora, Jacek W; Seckler, Henrique S et al. (2018) The Value of Activated Ion Electron Transfer Dissociation for High-Throughput Top-Down Characterization of Intact Proteins. Anal Chem 90:8553-8560
Skinner, Owen S; Haverland, Nicole A; Fornelli, Luca et al. (2018) Top-down characterization of endogenous protein complexes with native proteomics. Nat Chem Biol 14:36-41
Xu, Li; Gordon, Ryan; Farmer, Rebecca et al. (2018) Precision therapeutic targeting of human cancer cell motility. Nat Commun 9:2454
Yue, Jun; Pallares, Roger M; Cole, Lisa E et al. (2018) Smaller CpG-Conjugated Gold Nanoconstructs Achieve Higher Targeting Specificity of Immune Activation. ACS Appl Mater Interfaces 10:21920-21926
Mullowney, Michael W; McClure, Ryan A; Robey, Matthew T et al. (2018) Natural products from thioester reductase containing biosynthetic pathways. Nat Prod Rep 35:847-878
Miley, Galen P; Rote, Jennifer C; Silverman, Richard B et al. (2018) Total Synthesis of Tambromycin Enabled by Indole C-H Functionalization. Org Lett 20:2369-2373
Skakuj, Kacper; Wang, Shuya; Qin, Lei et al. (2018) Conjugation Chemistry-Dependent T-Cell Activation with Spherical Nucleic Acids. J Am Chem Soc 140:1227-1230
Ramirez, Yesid A; Adler, Thomas B; Altmann, Eva et al. (2018) Structural Basis of Substrate Recognition and Covalent Inhibition of Cdu1 from Chlamydia trachomatis. ChemMedChem 13:2014-2023
Seckler, Henrique Dos Santos; Fornelli, Luca; Mutharasan, R Kannan et al. (2018) A Targeted, Differential Top-Down Proteomic Methodology for Comparison of ApoA-I Proteoforms in Individuals with High and Low HDL Efflux Capacity. J Proteome Res 17:2156-2164
Parkinson, Elizabeth I; Tryon, James H; Goering, Anthony W et al. (2018) Discovery of the Tyrobetaine Natural Products and Their Biosynthetic Gene Cluster via Metabologenomics. ACS Chem Biol 13:1029-1037

Showing the most recent 10 out of 50 publications