This Training Program provides a high-quality interdisciplinary training experience for pre- and postdoctoral trainees in cardiovascular physiology and pathophysiology. Training includes molecular, cell and systems biology, with an emphasis on translational science. Our goal is to provide trainees with comprehensive, multi-faceted training in cardiac and vascular cell biology, imbued with a strong appreciation of the disease relevance of their research. Our 32 faculty mentors are from 13 basic and clinical departments and divisions in the School of Medicine (SOM), School of Nursing (SON) and Medical Biotechnology Center (MBC) of the University of Maryland Biotechnology Institute (UMBI). All senior faculty mentors are NIH-funded;our talented new junior faculty, are, themselves, closely mentored provide the next wave of mentors for the Training Program The Program brings together selected, motivated students and postdoctoral fellows. Training opportunities are broad and include: molecular determinants of cardiovascular function, structure and function studies of cardiac and vascular signaling pathways, including protein trafficking. In this renewal there is increased focus, on genetics of cardiovascular diseases, analysis of the function of individual cardiac and vascular cells, as well as the biomechanical properties of whole tissues and intact organs. With reorganization of graduate studies at the School of Medicine (SOM) under the umbrella Graduate Program in Life Sciences (GPILS), quality and number of TGE predoctoral applicants continues to increase. Institutional support for graduate education is outstanding, with an annual investment over $2M. GPILS also takes the lead in mentoring postdoctoral fellows (e.g. career seminars, grant writing workshops). The coursework for pre-doctoral trainees consists of an 8 credit Core Curriculum, interdisciplinary courses in muscle biology, molecular biology and functional genomics. Topics in Molecular Medicine, a newly plaimed course on cardiac pathophysiology, and a hands on course on cardiovascular fiinction. The Program provides the framework for a cross-discipline, interactive community of pre- and postdoctoral trainees. Postdoctoral fellows take two cardiovascular intensive courses for credit and join with predoctoral trainees in regular meetings to present work-in-progress, provide feedback on the program, attend and present at weekly lunch time research forums, a weekly journal clubs and Annual Research Retreat. A new Program Director, and new Steering Committee, and an External Advisory Committee (EAC) closely track progress of the trainees and the success of the overall Program. Trainees completing this program will be prepared to bring to bear a range of experimental approaches on basic questions in normal cardiac and vascular cell biology, on the underlying mechanisms responsible for cardiac and vascular pathologies, and on their possible cure and prevention.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HL072751-08
Application #
8111901
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Roltsch, Mark
Project Start
2003-04-01
Project End
2014-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
8
Fiscal Year
2011
Total Cost
$323,083
Indirect Cost
Name
University of Maryland Baltimore
Department
Physiology
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Reho, John J; Kenchegowda, Doreswamy; Asico, Laureano D et al. (2016) A splice variant of the myosin phosphatase regulatory subunit tunes arterial reactivity and suppresses response to salt loading. Am J Physiol Heart Circ Physiol 310:H1715-24
Wade, James B; Liu, Jie; Coleman, Richard et al. (2015) SPAK-mediated NCC regulation in response to low-K+ diet. Am J Physiol Renal Physiol 308:F923-31
Zheng, Xiaoxu; Reho, John J; Wirth, Brunhilde et al. (2015) TRA2? controls Mypt1 exon 24 splicing in the developmental maturation of mouse mesenteric artery smooth muscle. Am J Physiol Cell Physiol 308:C289-96
Fisch, Adam S; Yerges-Armstrong, Laura M; Backman, Joshua D et al. (2015) Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction. PLoS One 10:e0138795
Reho, John J; Zheng, Xiaoxu; Asico, Laureano D et al. (2015) Redox signaling and splicing dependent change in myosin phosphatase underlie early versus late changes in NO vasodilator reserve in a mouse LPS model of sepsis. Am J Physiol Heart Circ Physiol 308:H1039-50
Harris, Donald G; Quinn, Kevin J; French, Beth M et al. (2015) Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood. Xenotransplantation 22:102-11
Reho, John J; Fisher, Steven A (2015) The stress of maternal separation causes misprogramming in the postnatal maturation of rat resistance arteries. Am J Physiol Heart Circ Physiol 309:H1468-78
Grimm, P Richard; Lazo-Fernandez, Yoskaly; Delpire, Eric et al. (2015) Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest 125:2136-50
Castro, Caitlin D; Flajnik, Martin F (2014) Putting J chain back on the map: how might its expression define plasma cell development? J Immunol 193:3248-55
Harris, Donald G; Quinn, Kevin J; Dahi, Siamak et al. (2014) Lung xenotransplantation: recent progress and current status. Xenotransplantation 21:496-506

Showing the most recent 10 out of 59 publications