Basic and translational research in hematology has been at the cutting edge of recent advances in our understanding of the molecular pathophysiology of disease. The former Harvard Medical School Training Program in Molecular Hematology had a distinguished 25-year track record in training graduate students and postdoctoral fellows in the study of blood and its disorders, with many graduates of the program going on to highly successful academic careers. The past 25 years have seen many changes in the landscape of hematology-oncology in the Harvard Medical area, with the merging of the Hematology program at the Brigham and Women's Hospital with the oncology programs at the Massachusetts General Hospital and the Dana-Farber to form a combined Hematology-Oncology fellowship. This has had many positive effects on the opportunities for clinical and research training, complemented by a proliferation of training programs. At the same time, an explosion of new technologies has ushered in an era in biomedical research that offers exciting opportunities for major breakthroughs in our understanding of human disease, offering hope for new clinical paradigms that can transform the treatment of many hematologic disorders. However, the loss of a dedicated Hematology fellowship has made us acutely aware of the importance of nurturing physician scientists dedicated to the study of hematology. Indeed, the disappearance of free-standing hematology fellowships nationwide and the shrinking numbers of Hematology trainees signals an urgent need to encourage future academic hematologists. Therefore, in this new application, we seek to extend the success of the previous Hematology training program through a newly configured faculty and a more defined focus. The program will be limited to postdoctoral positions, and the selection process will place high priority on trainin physician- scientists focused on hematology. Potential candidates will be nominated by a potential preceptor or program leader, and applications will be reviewed by a Steering Committee. Final appointments will be made by the Program Directors. The primary site of training will be the preceptor's laboratory, but each trainee will be expected to participate in relevant seminars and courses within the HMS community. Each trainee will also assemble a training committee that will monitor research progress with annual formal presentations. We will strongly encourage the investigation of benign hematologic disorders in the areas of red cell disorders, iron metabolism, hemostasis and thrombosis, and neutrophil disorders, as well as hematologic malignancies such as leukemia, myelodysplasia, and myeloproliferative neoplasms. This strict focus on Hematology will distinguish this grant from other Harvard-related training grants, fulfilling a need that is not answered by any other training grant within adult medicine.

Public Health Relevance

Research in hematology has been at the cutting edge of medical advances for decades, providing novel paradigms for the study of human disease. Nevertheless, hematologic diseases remain major public health problems, and the number of physician-scientists dedicated to the study of hematology is declining. This grant is focused on clinician scientists and aims to support a laboratory-based training program to nurture the next generation of hematologists focused on research in molecular hematology.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
4T32HL116324-04
Application #
9115999
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Chang, Henry
Project Start
2013-08-01
Project End
2018-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
Liu, Suhu; Marneth, Anna E; Alexe, Gabriela et al. (2018) The kinases IKBKE and TBK1 regulate MYC-dependent survival pathways through YB-1 in AML and are targets for therapy. Blood Adv 2:3428-3442
Kapp, Friedrich G; Perlin, Julie R; Hagedorn, Elliott J et al. (2018) Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature 558:445-448
De Ceunynck, Karen; Peters, Christian G; Jain, Abhishek et al. (2018) PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. Proc Natl Acad Sci U S A 115:E982-E991
Iorgulescu, J Bryan; Braun, David; Oliveira, Giacomo et al. (2018) Acquired mechanisms of immune escape in cancer following immunotherapy. Genome Med 10:87
Gibson, Christopher J; Kennedy, James A; Nikiforow, Sarah et al. (2017) Donor-engrafted CHIP is common among stem cell transplant recipients with unexplained cytopenias. Blood 130:91-94
Jaiswal, Siddhartha; Natarajan, Pradeep; Silver, Alexander J et al. (2017) Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med 377:111-121
Sperling, Adam S; Gibson, Christopher J; Ebert, Benjamin L (2017) The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer 17:5-19
Johnson, Kelly E; Forward, Jodi A; Tippy, Mason D et al. (2017) Tamoxifen Directly Inhibits Platelet Angiogenic Potential and Platelet-Mediated Metastasis. Arterioscler Thromb Vasc Biol 37:664-674
Gansner, John M; Achebe, Maureen M; Gray, Kathryn J et al. (2017) Pregnancy outcomes in inherited bone marrow failure syndromes. Blood 130:1671-1674
Crombie, Jennifer; Davids, Matthew S (2017) IGHV mutational status testing in chronic lymphocytic leukemia. Am J Hematol 92:1393-1397

Showing the most recent 10 out of 25 publications