Understanding normal brain development and function and how it is altered by disease, injury, or environmental factors is one of the most exciting frontiers remaining in biomedical science today. New knowledge and tools acquired over the past decade offer hope for the development of new therapies for neurodevelopmental disorders, psychiatric illnesses, spinal cord injury, stroke, and neurodegenerative diseases. However, to effectively apply basic science knowledge to address these neural disorders requires the training of a new generation of neuroscientists. The goal of this training program is to provide five trainees in the first two years of Ph.D. training with a deep understanding of nervous system function and dysfunction at multiple levels of organization (molecular, cellular, circuit, behavior) and with the ability to apply diverse approaches (molecular/genetic, physiology, imaging) to understand how the nervous system develops, functions, and responds to injury or disease. This will be achieved by a program of formal course work and laboratory rotations with a highly interactive group of trainers whose expertise spans a broad range of neuroscience, in addition to active, continuous self-learning though participation in journal clubs, outside seminars, and other interactive forums. The program is aimed at equipping the trainees with the skills needed to identify and solve important problems throughout their careers as independent scientists.
The training provided by this program will enable a new generation of neuroscientists to apply their knowledge of basic neuroscience mechanisms to develop therapies for neurodevelopmental disorders, psychiatric illnesses, spinal cord injury, stoke, and neurodegenerative disorders.
Showing the most recent 10 out of 13 publications