Age-related deterioration in bone, muscle and physical performance, manifested as osteoporosis, sarcopenia, and disability, are major causes of morbidity and mortality in the elderly. It is a priority to understand how musculoskeletal phenotypes and physical activity change with age, the factors that contribute to these changes, and how changes impact clinically important health outcomes. MrOS is a unique prospective study of 5994 older men that has been extremely productive in expanding our understanding of age-related change in musculoskeletal health. Initiated in 2000, it includes extensive longitudinal, objective, state-of-the-art assessments of bone, muscle, physical performance, physical activity and health outcomes, as well as biospecimen and imaging archives. We propose to extend these resources to allow a comprehensive and integrated understanding of the processes and consequences of musculoskeletal aging and decline in physical activity in older men studied over a 15 year period. The overall long term goal of the project is to identity men at risk of adverse health outcomes who may benefit from preventive measures and rehabilitation, discover new targets for treating and preventing declines in musculoskeletal health and activity, and improve our understanding of optimal aging (men who maintain their musculoskeletal health and activity levels over an average overall follow-up of 15 years). Specifically, we will leverage our repeated measurements to define age- related trajectories in phenotypes of musculoskeletal health, physical performance, and physical activity in order to determine factors that predict and contribute to these trajectories. We will test the hypotheses that favorable trajectories in musculoskeletal health are associated with lower risks of incident falls, fractures, disability and mortality and that age-related deterioration in bone, muscle and physical performance can occur concurrently;combined deterioration magnifies the risk of poor functional and health outcomes. Second, we will characterize change and trajectories in activity levels in older men using our repeated state-of-the-art questionnaire and objectively assessed energy expenditure from accelerometry. Third, we will take advantage of a linkage of MrOS with Medicare Claims data to determine the association of trajectories in musculoskeletal phenotypes and activity with inpatient and nursing home related health care utilization. Fourth, we will examine novel characteristics of cortical bone that may cause age-related skeletal fragility by using high resolution peripheral quantitative computed tomography to measure cortical porosity. We will relate trajectories of musculoskeletal health and activity to these measures of cortical bone and test whether increased cortical porosity is related to fractures. Finally, we will continue to leverage MrOS as a platform for new science and the training of investigators. Our application is consistent with the mission of the NIA and NIAMS to conduct research related to the aging process and diseases and conditions associated with musculoskeletal aging, and foster the development of new research scientists in this scientific area.

Public Health Relevance

Decreases in bone, muscle, physical performance and physical activity occur with advancing age and can lead to increased risk of fractures, falls, disability and death. These declines may also lead to substantial and potentially preventable increases in health care utilization, further straining our limited health care resources. During this next phase of MrOS, the largest cohort designed to study musculoskeletal aging, we will expand our current understanding of musculoskeletal aging, the trajectories of change in musculoskeletal function, factors that may contribute to change or the maintenance of health, and the relationship of these trajectories to important health outcomes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01AR066160-15
Application #
8713646
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5 (05))
Program Officer
Chen, Faye H
Project Start
1999-09-30
Project End
2018-04-30
Budget Start
2014-08-01
Budget End
2015-04-30
Support Year
15
Fiscal Year
2014
Total Cost
$1,700,000
Indirect Cost
$532,672
Name
California Pacific Medical Center Research Institute
Department
Type
DUNS #
071882724
City
San Francisco
State
CA
Country
United States
Zip Code
94107
Slinin, Yelena; Vo, Tien; Taylor, Brent C et al. (2018) Serum phosphate and cognitive function in older men. Int J Geriatr Psychiatry 33:159-166
Suri, Pradeep; Palmer, Melody R; Tsepilov, Yakov A et al. (2018) Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain. PLoS Genet 14:e1007601
Harvey, Nicholas C; Odén, Anders; Orwoll, Eric et al. (2018) Measures of Physical Performance and Muscle Strength as Predictors of Fracture Risk Independent of FRAX, Falls, and aBMD: A Meta-Analysis of the Osteoporotic Fractures in Men (MrOS) Study. J Bone Miner Res 33:2150-2157
Laddu, Deepika; Parimi, Neeta; Cauley, Jane A et al. (2018) The Association Between Trajectories of Physical Activity and All-Cause and Cause-Specific Mortality. J Gerontol A Biol Sci Med Sci 73:1708-1713
Eurelings, Lisa Sm; van Dalen, Jan Willem; Ter Riet, Gerben et al. (2018) Apathy and depressive symptoms in older people and incident myocardial infarction, stroke, and mortality: a systematic review and meta-analysis of individual participant data. Clin Epidemiol 10:363-379
Cauley, Jane A; Burghardt, Andrew J; Harrison, Stephanie L et al. (2018) Accelerated Bone Loss in Older Men: Effects on Bone Microarchitecture and Strength. J Bone Miner Res 33:1859-1869
Bonham, Luke W; Evans, Daniel S; Liu, Yongmei et al. (2018) Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for GNG4 and KCNQ2 Genes. Am J Alzheimers Dis Other Demen 33:153-165
Chen, Han; Cade, Brian E; Gleason, Kevin J et al. (2018) Multiethnic Meta-Analysis Identifies RAI1 as a Possible Obstructive Sleep Apnea-related Quantitative Trait Locus in Men. Am J Respir Cell Mol Biol 58:391-401
Yang, L; Parimi, N; Orwoll, E S et al. (2018) Association of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int 29:643-651
Janssen, Stefan; McDonald, Daniel; Gonzalez, Antonio et al. (2018) Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information. mSystems 3:

Showing the most recent 10 out of 169 publications