Assessment of anti-angiogenic therapies for the most severe form of brain cancer, glioblastoma, is extremely timely given the recent approval of bevacizumab yet the moderate response rate and the challenging side effects of these therapies. Clinical decision-making tools are badly needed;fortunately, our recently published data suggest that measurement of microvascular properties of the tumor using MRI and gadolinium-based approaches could be very useful, as with proper quantitation these methods appear to be capable of serving as an effective prognostic imaging biomarker, and may be beneficially combined with blood biomarkers. We propose to join the NCI's Quantitative Imaging Network (QIN) and develop improved analysis methods for dynamic contrast enhanced MRI and dynamic susceptibility MRI that will improve quantification and decrease variability. We propose to develop techniques that will be applicable in the multicenter setting through a bottom-up approach of simulations, phantom studies, retrospective analysis, and prospective analysis in patients undergoing treatment with anti-angiogenic therapies. We anticipate that our proposed approach, in particular through working in close harmony with the QIN, will improve the reliability of advanced microvascular MRI methods as potential imaging biomarkers, and pave the way for a clinically useful decision-making tool.

Public Health Relevance

Advanced MRI methods may improve our ability to provide an accurate prognosis and potentially guide treatment choices for glioblastoma patients. Our proposed research will help establish a common, standardized approach to acquisition and analysis of two forms of vascular MRI that have shown excellent promise. We will do this by careful reduction of variability and by close participation in the National Cancer Institute's Quantitative Imaging Network. These efforts will enable these advanced techniques to become more widely available and more appropriately establish their benefit to patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01CA154601-02
Application #
8263032
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O2))
Program Officer
Nordstrom, Robert J
Project Start
2011-05-06
Project End
2017-04-30
Budget Start
2012-08-23
Budget End
2013-04-30
Support Year
2
Fiscal Year
2012
Total Cost
$356,399
Indirect Cost
$313,217
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Schmainda, K M; Prah, M A; Rand, S D et al. (2018) Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project. AJNR Am J Neuroradiol 39:1008-1016
Chang, Ken; Balachandar, Niranjan; Lam, Carson et al. (2018) Distributed deep learning networks among institutions for medical imaging. J Am Med Inform Assoc 25:945-954
Balagurunathan, Yoganand; Beers, Andrew; Kalpathy-Cramer, Jayashree et al. (2018) Semi-automated pulmonary nodule interval segmentation using the NLST data. Med Phys 45:1093-1107
Bane, Octavia; Hectors, Stefanie J; Wagner, Mathilde et al. (2018) Accuracy, repeatability, and interplatform reproducibility of T1 quantification methods used for DCE-MRI: Results from a multicenter phantom study. Magn Reson Med 79:2564-2575
Newitt, David C; Malyarenko, Dariya; Chenevert, Thomas L et al. (2018) Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network. J Med Imaging (Bellingham) 5:011003
Paul, Rahul; Hawkins, Samuel H; Schabath, Matthew B et al. (2018) Predicting malignant nodules by fusing deep features with classical radiomics features. J Med Imaging (Bellingham) 5:011021
Elhalawani, Hesham; Lin, Timothy A; Volpe, Stefania et al. (2018) Machine Learning Applications in Head and Neck Radiation Oncology: Lessons From Open-Source Radiomics Challenges. Front Oncol 8:294
Chang, Ken; Bai, Harrison X; Zhou, Hao et al. (2018) Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging. Clin Cancer Res 24:1073-1081
Joint Head and Neck Radiotherapy-MRI Development Cooperative (2018) Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers. Sci Data 5:180008
Zhou, M; Scott, J; Chaudhury, B et al. (2018) Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. AJNR Am J Neuroradiol 39:208-216

Showing the most recent 10 out of 61 publications