Most human tumors, particularly those derived from epithelial cancers, exhibit global genomic alterations that make it difficult to identify mutations critical for cell transformation and to define the consequences of specific cancer associated mutations. Recent advances in sequencing technologies and comprehensive methods to map cancer-associated amplicons and deletions now make it possible to identify all of the genetic alterations harbored by a particular tumor, and large-scale efforts such as TCGA to apply these technologies have already begun to provide comprehensive views of cancer genomes. Despite these important advances, a critical bottleneck in translating these discoveries into therapies that will enter the clinic remais the functional characterization of genes as potential therapeutic targets. Specifically, although the identification of genes that are mutated in a substantial fraction of particular cancer types is an essential first step, the parallel development of efficient methods to annotate the function of cancer-associated genes is necessary to distill promising candidate cancer targets from this structural description of cancer genomes. Thus, functional annotation of cancer genes will identify those genes whose protein products are essential for tumor initiation or maintenance and will provide critical insights into the biochemical pathways that ar dysregulated in these same cancers. This information will accelerate the development of new molecularly targeted therapeutics. In this application, we propose use these studies as a foundation to establish the Dana- Farber Cancer Institute Cancer Target Discovery and Development Center. This Center will focus on the use of high throughput genetic and bioinformatic approaches to identify and credential oncogenes and co-dependencies in three cancers (GBM, ovarian, and colon) in vitro and in vivo. We will make the outputs of these studies (data and methodologies) freely available to the scientific community and intend to participate in CTDD Network projects throughout the time frame of this project. We anticipate that this Center will provide the cancer research community with information tht will facilitate the prioritization of targets based on both genomic and functional evidence, inform the most appropriate genetic context for downstream mechanistic and validation studies and facilitate the translation of this information into therapeutics and diagnostis.

Public Health Relevance

The overarching goals of these studies are the implementation of high throughput technologies that will provide functional information for genes identified as mutated or amplified in glioblastoma, ovarian, colon and pancreatic cancers and the dissemination of this information and validated reagents to the cancer research community. The cancer genes identified using these approaches represent prioritized candidates for investigator-initiated research programs and targets of particular promise for future therapeutic efforts. These studies will leverage prior investments in cancer genome characterization and provide outputs that will facilitate investigator-initiated baic and translational studies and accelerate the development of new therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01CA176058-02
Application #
8654308
Study Section
Special Emphasis Panel (ZCA1-SRLB-R (J1))
Program Officer
Gerhard, Daniela
Project Start
2013-05-01
Project End
2017-04-30
Budget Start
2014-05-09
Budget End
2015-04-30
Support Year
2
Fiscal Year
2014
Total Cost
$693,679
Indirect Cost
$213,729
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Lo, Justin H; Hao, Liangliang; Muzumdar, Mandar D et al. (2018) iRGD-guided Tumor-penetrating Nanocomplexes for Therapeutic siRNA Delivery to Pancreatic Cancer. Mol Cancer Ther 17:2377-2388
Gannon, Hugh S; Zou, Tao; Kiessling, Michael K et al. (2018) Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat Commun 9:5450
Viswanathan, Srinivas R; Nogueira, Marina F; Buss, Colin G et al. (2018) Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer. Nat Genet 50:937-943
Li, Ji; Choi, Peter S; Chaffer, Christine L et al. (2018) An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. Elife 7:
Aguirre, Andrew J; Hahn, William C (2018) Synthetic Lethal Vulnerabilities in KRAS-Mutant Cancers. Cold Spring Harb Perspect Med 8:
Zhang, Xiaoyang; Choi, Peter S; Francis, Joshua M et al. (2018) Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor. Cancer Discov 8:108-125
Takeda, David Y; Spisák, Sándor; Seo, Ji-Heui et al. (2018) A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. Cell 174:422-432.e13
Giacomelli, Andrew O; Yang, Xiaoping; Lintner, Robert E et al. (2018) Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet 50:1381-1387
Qian, Zhi Rong; Rubinson, Douglas A; Nowak, Jonathan A et al. (2018) Association of Alterations in Main Driver Genes With Outcomes of Patients With Resected Pancreatic Ductal Adenocarcinoma. JAMA Oncol 4:e173420
Sandoval, Gabriel J; Pulice, John L; Pakula, Hubert et al. (2018) Binding of TMPRSS2-ERG to BAF Chromatin Remodeling Complexes Mediates Prostate Oncogenesis. Mol Cell 71:554-566.e7

Showing the most recent 10 out of 57 publications