Activating mutations of KRAS are among the most common mutations found in human cancers, and cancers that harbor KRAS clearly depend on the activity of this oncogene for tumor maintenance. However, despite considerable effort, direct targeting of KRAS or known KRAS effector pathways has not yet led to effective therapies in cancers that harbor mutant KRAS. An alternative approach to direct targeting of known cancer alleles is to exploit the genetic concept of synthetic lethality, in which gene products are identified that, when suppressed or inhibited, result in cell death only in the presence of another non-lethal mutation. Synthetic phenotype screens in model organisms have provided insights into a broad spectrum of biological processes and in principle; this strategy provides a means to target currently undruggable proteins while simultaneously reducing the potential for side effects. Over the past several years, we and others have used RNAi-mediated suppression of gene expression to identify genes whose expression is required in cell lines that depend on mutant KRAS for survival. Inhibitors to some of these synthetic lethal candidates are now the subject of clinical trials in KRAS-driven cancers. However, these early studies used different cells and experimental systems and were limited by scale, technological issues or context. In addition, the discovery and development of new gene manipulation technologies such as Cas9-CRISPR, and methods to isolate and propagate human tumors now provide the opportunity to comprehensively identify novel genes and pathways that are required for the survival of KRAS-dependent cancers. In this application, we propose to use new genome scale gene manipulation technologies, potentially more relevant human and murine experimental models and advanced analytical approaches in an integrated approach to systematically identify KRAS synthetic lethal relationships in cell, organoid and animal models. Specifically, we will performed genome scale CRISPR mediated loss of function experiments to identify KRAS co-dependencies in both in vitro and in vivo model systems and identify genes and pathways that when inhibited synergize with known KRAS effector pathways to induce tumor regression in KRAS driven cancers. These studies will permit us to define the signaling network perturbed by oncogenic KRAS necessary for tumor maintenance and progression. Targets identified by these approaches will form the basis of translational studies to develop novel therapeutic approaches.

Public Health Relevance

Although significant progress has been made in the diagnosis and treatment of lung, colon and pancreatic cancers, we lack curative therapies that target the major oncogenic pathways that drive the pathogenesis of these cancers. In particular, the KRAS oncogene, which is recurrently mutated in these cancers, has proven particularly challenging to targeted therapeutically. This application focuses on identify genes that are required specifically in the context of cancers that harbor and depend on oncogenic KRAS using systematic studies using genome scale technologies and novel sophisticated patient derived and animal models. These innovative studies will serve as a foundation for translational studies for the development of novel therapeutic agents.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
3U01CA199253-04S1
Application #
9952702
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Watson, Joanna M
Project Start
2015-09-25
Project End
2020-08-31
Budget Start
2018-09-01
Budget End
2020-08-31
Support Year
4
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Broad Institute, Inc.
Department
Type
DUNS #
623544785
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Giacomelli, Andrew O; Yang, Xiaoping; Lintner, Robert E et al. (2018) Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet 50:1381-1387
Qian, Zhi Rong; Rubinson, Douglas A; Nowak, Jonathan A et al. (2018) Association of Alterations in Main Driver Genes With Outcomes of Patients With Resected Pancreatic Ductal Adenocarcinoma. JAMA Oncol 4:e173420
Aguirre, Andrew J; Nowak, Jonathan A; Camarda, Nicholas D et al. (2018) Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. Cancer Discov 8:1096-1111
Chen, Liying; Alexe, Gabriela; Dharia, Neekesh V et al. (2018) CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Invest 128:446-462
Aguirre, Andrew J; Hahn, William C (2018) Synthetic Lethal Vulnerabilities in KRAS-Mutant Cancers. Cold Spring Harb Perspect Med 8:
Kim, Jong Wook; Abudayyeh, Omar O; Yeerna, Huwate et al. (2017) Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States. Cell Syst 5:105-118.e9
Wang, Belinda; Krall, Elsa Beyer; Aguirre, Andrew James et al. (2017) ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition. Cell Rep 18:1543-1557
Meyers, Robin M; Bryan, Jordan G; McFarland, James M et al. (2017) Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet 49:1779-1784
Rosenbluh, Joseph; Xu, Han; Harrington, William et al. (2017) Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nat Commun 8:15403
Krall, Elsa B; Wang, Belinda; Munoz, Diana M et al. (2017) KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. Elife 6:

Showing the most recent 10 out of 20 publications