Small cell lung carcinoma (SCLC) is one of the deadliest cancers, a ?recalcitrant? cancer for which there is no effective treatment except when the disease is diagnosed early. However, only a small fraction of patients are diagnosed early in disease. The greatest challenge to early diagnosis is that SCLC tumor cells typically acquire an exceptional mutation burden and metastasize early, so for most patients disease has spread beyond the lung at the time of diagnosis. The key to developing effective early diagnosis and treatment methods is to elucidate the earliest molecular and cellular events of tumor initiation to uncover ones that can be detected by screening during the premalignant phase of the disease. The goal of this proposal is to define the early, premalignant molecular and cellular events of SCLC, so that they can be detected early and destroyed before they become a deadly, untreatable disease. SCLC is a neuroendocrine cancer. The prominent cell of origin is pulmonary neuroendocrine (NE) cells, neurosensory and neurosecretory epithelial cells that sense and respond to the environment in the lung. Recently, a minor subpopulation of NE cells was found to have stem cell activity, proliferating, dispersing, and replenishing the surrounding bronchial epithelium following severe airway injury. Loss of tumor suppressors Rb and p53 constitutively activates the stem cell program within days of loss of the tumor suppressors, even in the absence of injury. In this proposal, a combination of genetics, cell culture, and single-cell genomics is used to systematically interrogate these stem cells at cellular resolution, both in healthy lungs and in the early, premalignant stage of SCLC. The goal is to define the molecular events immediately following loss of Rb and p53 that constitutively activate the stem cell program and initiate their transformation into cancer stem cells that spread, mutate, and escape immune destruction, and to identify the signals they secrete that might allow the tumors to be detected before they become deadly.

Public Health Relevance

Small cell lung carcinoma (SCLC) is one of the most lethal forms of human cancer, a disease whose late detection severely limits treatment options. Here we propose a combination of mouse and human genetics and deep genomic approaches to identify early cellular and molecular events in SCLC with the ultimate goal of developing novel strategies for early detection and treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01CA231851-01
Application #
9602535
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Szabo, Eva
Project Start
2018-09-19
Project End
2023-08-31
Budget Start
2018-09-19
Budget End
2019-08-31
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Stanford University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304