Approximately 10% of TMD patients will not experience an improvement of their symptoms and around 75% of patients who fail to respond to conservative treatments are also not suitable for TM joint surgery. Initial studies from our NIH NIDCR R56 project using positron emission tomography (PET) with [11C] Carfentanil, a selective radiotracer for ?-opioid receptor (?OR), have demonstrated that there is a decrease in thalamic OR availability (non-displaceable binding potential BPND) in the brains of TMD patients during masseteric pain compared to healthy controls. ?-opioid neurotransmission is arguably one of the mechanisms most centrally involved in pain regulation and experience. Moreover, the thalamus is the major relay structure in the forebrain for (non)-noxious inputs, which will be distributed subsequently to multiple cortical areas for discriminative, cognitive and affective processing. MRI-based reports have found that those findings co-localize with neuroplastic changes in trigeminal pain patients. Conventional therapies are unable to selectively target the thalamus and associated regions, and there is a paucity of data on how to reverse neuroplastic molecular mechanisms when available medications fail. Interestingly, several studies with motor cortex stimulation (MCS) have shown that epidural electrodes in the primary motor cortex (M1) are effective in providing analgesia in patients with central pain, and that it occurs via indirect modulation of thalamic activity. Evidently, the invasive nature of sucha procedure limits its indication to highly severe pain disorders. New non-invasive neuromodulatory methods for M1, such as transcranial direct current stimulation (tDCS), can now safely modulate the OR system, providing relatively lasting pain relief in pain patients. Recently, a novel high-definition tDCS (HD-tDCS) montage created by our group was able to reduce exclusively contralateral sensory- discrimative clinical pain measures (intensity/area) in TMD patients by targeting precisely the M1 region. Therefore, the main goals of our study are: First, to exploit the ?-opioidergic dysfunction in vivo in TMD patients compared to healthy controls; Second, to determine whether 10 daily sessions of non- invasive and precise M1 HD-tDCS have a modulatory effect on clinical and experimental pain measures in TMD patients; and Third, to investigate whether repetitive active M1 HD-tDCS induces/reverts ?OR BPND changes in the thalamus and other pain-related regions, and whether those changes are correlated with TMD pain measures. The studies above represent a change in paradigm in TMD research, as we directly investigate and modulate in vivo one of the most important endogenous analgesic mechanisms in the brain.

Public Health Relevance

In this study, our team of researchers will investigate the impact of chronic temporomandibular disorder suffering on the endogenous -opioid system in vivo, arguably one of the principal endogenous pain modulatory systems in the brain, and its modulation by 10 daily sessions of primary motor cortex stimulation using high-definition transcranial direct current stimulation (HD-tDCS).

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01DE025633-01
Application #
9008258
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Vallejo-Estrada, Yolanda
Project Start
2016-08-01
Project End
2021-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
1
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Biology
Type
Schools of Dentistry/Oral Hygn
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109