This grant will develop a wireless wearable high-performance, high-density diffuse optical tomography (DOT) instrument for mapping of brain function in naturalistic settings. Functional neuroimaging of healthy adults has enabled mapping of brain function and revolutionized cognitive neuroscience. Increasingly, functional neuroimaging is being used in younger age groups, and as a diagnostic and prognostic tool in the clinical setting. Its expanding application in the study of both health and disease necessitates new, more flexible tools. The logistics of traditional functional brain scanners (e.g., fMRI) are ill-suited to many subjects. In particular, fMRI is not suited for imaging subjects who cannot lie sufficiently still in MRI scanners. In addition to young children (i.e. under 5 years old) in general, this requirement also excludes children with disorders of voluntary movement, such as moderate to severe cerebral palsy. A majority of patients with CP have either spasticity and/or dyskinesia, movement disorders that prohibits successful fMRI due to motion artifacts. A subset of CP subjects can be considered to have effectively a pediatric form of a ?locked-in-syndrome?, in the sense that, while intelligence can be spared entirely, motor system dysfunction prevents the ability to speak or sign. Not uncommonly, the intellectual capacities of these children are never recognized by care-providers, educators, and family members. Thus, there are many intriguing questions in the CP population that could be addressed with functional neuroimaging, such as questions of motor plasticity and learning, perhaps the most compelling is identifying and characterizing the cognitive and neuroanatomical architecture of children with CP who are locked in. Such work could provide a path to unlocking the cognitive capacities of children with severe motor dysfunction. These studies cannot be done with fMRI. Optical imaging has long held promise as a naturalistic neuroimaging technique. Recent development of high- density diffuse optical tomography (HD-DOT), a tomographic version of fNIRS, has improved image quality dramatically. When matched within subjects against fMRI, HD-DOT now can obtain localization errors <5mm, and point spread functions <15 mm FWHM, sufficient to localize functions to gyri. While initial HD-DOT reports have been confined to simpler sensory networks (visual and motor), recent results demonstrate the feasibility of mapping distributed cognitive networks, including the dorsal attention and default mode networks. Despite these advances, application of HD-DOT to naturalistic studies has been limited by a barrier imposed by a tradeoff between coverage and wear-ability. The central photonic challenges are optical sensitivity - which would bias design towards larger/heavier fibers, and coverage - which would bias design towards a larger number of fibers. In this proposal, Aims 1-2 address the technological challenges of developing a lightweight wireless HD-DOT(WHD-DOT) system.
Aim 3 develops the functional neuroimaging paradigms needed to map and decode brain function with WHD-DOT.
In Aim 4, we assess the feasibility of mapping and decoding pediatric patients with cerebral palsy using WHD-DOT.

Public Health Relevance

Children with cerebral palsy (CP), a non-progressive disorder of the motor system affecting roughly 3-in-1000 individuals worldwide, have a wide range of functional deficits, including motor impairments that both hinder activities of daily living and largely preclude participation in studies using extant neuroimaging technologies. This proposal aims to develop wireless and wearable optical neuroimaging for mapping and decoding brain function in children with CP.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01EB027005-01
Application #
9617591
Study Section
Special Emphasis Panel (ZEB1)
Program Officer
Wang, Shumin
Project Start
2018-09-24
Project End
2022-06-30
Budget Start
2018-09-24
Budget End
2019-06-30
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Washington University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130