We propose to use mathematical modeling to better understand the emergence/re-emergence of dengue fever and similar mosquito-borne diseases and to evaluate the effectiveness of intervention strategies on stopping them. The long term goal of this proposal is to reduce the burden of dengue fever and similar diseases by characterizing transmission to inform models of and response efforts to outbreaks. We intend to deliver a product to these public health officials and policy makers which not only is accurate and predictive, but which utilizes data that is readily available and/or routinely collected (e.g. clinical data, and that from mosquito surveillance programs), as well as a model that is both accessible in use and produces understandable and interpretable outputs. Further, we anticipate our model and outputs to be expandable to other existing vector borne viruses as well as to newly emerging threats not yet identified. Currently existing mathematical models of dengue virus transmission, though add to our understanding of transmission dynamics, are not primarily designed to account for detailed epidemiological prediction and evaluation. Predictive models need to span multiple scales, from house to the community to the international level. Accordingly, we propose the following specific aims: 1) Develop mathematical models of the infection dynamics of DENV in the mosquito and human, 2) Formulate models of the contact dynamics that drive transmission of DENV and 3) Integrate these component models into detailed agent-based simulation models of mosquito-borne transmission. By addressing these aims, we will confront the urgent public health problem of the emergence/re-emergence of dengue and similar viruses, such as chikungunya virus, in the continental US.

Public Health Relevance

As no vaccine or treatment is available for dengue virus, mitigating transmission is the first and only line of defense of public health. Adding precision and thus accuracy to known and accepted measures of transmission and ultimately informing a transmission model will allow for quicker, more directed and actionable responses to prevent and/or respond to an outbreak of a vector-borne virus such as dengue.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01GM097661-03
Application #
8466336
Study Section
Special Emphasis Panel (ZGM1-CBCB-3 (MI))
Program Officer
Sheeley, Douglas
Project Start
2011-06-15
Project End
2016-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
3
Fiscal Year
2013
Total Cost
$303,816
Indirect Cost
$95,550
Name
Louisiana State University A&M Col Baton Rouge
Department
Pathology
Type
Schools of Veterinary Medicine
DUNS #
075050765
City
Baton Rouge
State
LA
Country
United States
Zip Code
70803
Manore, Carrie A; Ostfeld, Richard S; Agusto, Folashade B et al. (2017) Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States. PLoS Negl Trop Dis 11:e0005255
Wearing, Helen J; Robert, Michael A; Christofferson, Rebecca C (2016) Dengue and chikungunya: modelling the expansion of mosquito-borne viruses into naïve populations. Parasitology :1-14
Christofferson, Rebecca C; Mores, Christopher N; Wearing, Helen J (2016) Bridging the Gap Between Experimental Data and Model Parameterization for Chikungunya Virus Transmission Predictions. J Infect Dis 214:S466-S470
Forshey, Brett M; Reiner, Robert C; Olkowski, Sandra et al. (2016) Incomplete Protection against Dengue Virus Type 2 Re-infection in Peru. PLoS Negl Trop Dis 10:e0004398
Robert, Michael A; Christofferson, Rebecca C; Silva, Noah J B et al. (2016) Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas: The Case of Dengue in Miami. PLoS One 11:e0161365
Bergsman, Louis D; Hyman, James M; Manore, Carrie A (2016) A mathematical model for the spread of west nile virus in migratory and resident birds. Math Biosci Eng 13:401-24
Christofferson, Rebecca C (2015) A Reevaluation of the Role of Aedes albopictus in Dengue Transmission. J Infect Dis 212:1177-9
Manore, Carrie A; Hickmann, Kyle S; Hyman, James M et al. (2015) A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease. J Biol Dyn 9:52-72
Christofferson, Rebecca C; Mores, Christopher N (2015) A role for vector control in dengue vaccine programs. Vaccine 33:7069-74
Brown, Lisa D; Christofferson, Rebecca C; Banajee, Kaikhushroo H et al. (2015) Cofeeding intra- and interspecific transmission of an emerging insect-borne rickettsial pathogen. Mol Ecol 24:5475-89

Showing the most recent 10 out of 34 publications