The overall objective of this proposal is to localize chromosomal loci (and ultimately genes) that interact with specific environmental exposures to modify risk factors for CVD using state-of-the-art molecular and statistical genetic approaches in the Old Order Amish, a unique closed founder population who are relatively genetically homogeneous, and have very large family sizes and well documented genealogies. Since February 1995, Dr. Shuldiner and his coworkers have recruited and studied over 2500 Amish individuals, 1,000 of whom are participants of Amish Family Calcification Study (AFCS), a study designed to examine independent and joint genetic influences on osteoporosis and coronary artery disease. Extensive phenotypic characterization of AFCS participants include blood pressure, body composition, bone mineral density, lipids, and coronary artery calcification by electron beam CT. DNA already has been collected on all AFCS subjects and a 5-cM genome scan (approximately 800 short tandem repeat (STR) markers) will be completed by Summer 2002.
The Specific Aims of this proposal are: (1) To perform four focused short-term interventions and to measure CVD responses in subjects of AFCS including high fat meal and changes in endothelial function as assessed by flow-mediated vasodilation (FMD) studies; cold presser stress and changes in FMD and blood pressure; a high salt and low salt diets and changes in blood pressure; and aspirin therapy and measures of platelet function; (2) To characterize the genetic epidemiology of the CVD related response to each short-term intervention; (3) To identify specific chromosomal loci that influence CVD related responses to the four interventions by performing genome-wide linkage analysis (4) To identify and localize chromosomal regions and genes influencing CVD related responses by exploiting the extended linkage disequilibrium in this relatively young founder population to perform LD mapping with densely distributed single nucleotide polymorphisms (SNPs) within linked regions; and (5) To determine if chromosomal regions linked to, or associated with, variation in CVD trait responses are also linked to, or associated with, variation in coronary artery or aortic calcification. Discovery of context-dependent CVD genes will provide (i) critical insights into molecular mechanisms and new molecular targets for therapeutics; (ii) clinically useful information that will allow physicians to individualize pharmacological and non-pharmacological therapy, and (iii) blood tests for the early detection of susceptibility individuals so that targeted preventative interventions can be instituted. These advances will impact substantially on the quality of life of millions of older Americans with CVD.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01HL072515-02
Application #
6667346
Study Section
Special Emphasis Panel (ZHL1-CSR-S (S1))
Program Officer
Jaquish, Cashell E
Project Start
2002-09-30
Project End
2006-08-31
Budget Start
2003-09-01
Budget End
2004-08-31
Support Year
2
Fiscal Year
2003
Total Cost
$2,461,109
Indirect Cost
Name
University of Maryland Baltimore
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Montasser, May E; O'Hare, Elizabeth A; Wang, Xiaochun et al. (2018) An APOO Pseudogene on Chromosome 5q Is Associated With Low-Density Lipoprotein Cholesterol Levels. Circulation 138:1343-1355
Geng, Xin; Irvin, Marguerite R; Hidalgo, Bertha et al. (2018) An exome-wide sequencing study of lipid response to high-fat meal and fenofibrate in Caucasians from the GOLDN cohort. J Lipid Res 59:722-729
Mitchell, Braxton D; Kalra, Gurmannat; Ryan, Kathleen A et al. (2018) Increased usual physical activity is associated with a blunting of the triglyceride response to a high-fat meal. J Clin Lipidol :
Tise, Christina G; Anforth, Leslie E; Zhou, Albert E et al. (2017) Sex-specific effects of serum sulfate level and SLC13A1 nonsense variants on DHEA homeostasis. Mol Genet Metab Rep 10:84-91
Xu, Huichun; Ryan, Kathleen A; Jaworek, Thomas J et al. (2017) Familial Hypercholesterolemia and Type 2 Diabetes in the Old Order Amish. Diabetes 66:2054-2058
Chu, Audrey Y; Deng, Xuan; Fisher, Virginia A et al. (2017) Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation. Nat Genet 49:125-130
Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang et al. (2017) Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat Commun 8:80
Aslibekyan, S; Do, A N; Xu, H et al. (2017) CPT1A methylation is associated with plasma adiponectin. Nutr Metab Cardiovasc Dis 27:225-233
D'Adamo, Christopher R; Dawson, Valerie J; Ryan, Kathleen A et al. (2016) The CAPN2/CAPN8 Locus on Chromosome 1q Is Associated with Variation in Serum Alpha-Carotene Concentrations. J Nutrigenet Nutrigenomics 9:254-264
Pattaro, Cristian (see original citation for additional authors) (2016) Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun 7:10023

Showing the most recent 10 out of 107 publications