? While diabetes mellitus can lead to serious damage to many organs, cardiovascular diseases are the major cause of death and morbidity in diabetic patients. Overall, patients with diabetes have a three to five fold increased risk of coronary artery diseases compared to non-diabetics. Our goal is to use mouse genetics for identifying genetic risk factors for the vascular complications of diabetes and for unraveling underlying mechanisms. Although a significant increase in atherosclerosis by diabetes has been demonstrated in atherogenic mouse models, none of these mouse models faithfully replicates the types of dyslipidemia associated with diabetes in humans. We postulate that this failure is due to differences in the relative levels of plasma low density lipoprotein (LDL) and plasma high density lipoprotein (HDL) that are controlled by genetic differences between the two species and genetic polymorphisms in humans. Thus our first hypothesis is that humanizing genes that are involved in lipoprotein metabolism in mice so that they develop a more human-like diabetic dyslipidemia will cause them to replicate better the cardiovascular problems of human diabetic patients. We will test this hypothesis in Specific Aim 1 by inducing diabetes in mice with humanized apoE of the three isoforms (E2, E3, and E4) and humanized LDL receptor (LDLR), with or without overexpression of human apoB. We predict that this will lead to diabetic dyslipidemia and accelerated atherosclerosis in an apoE isoform dependent manner. Our second hypothesis is that since diabetes is generally acknowledged to induce oxidative stress, genetically determined differences in the levels of endogenous anti-oxidants affect the development of cardiovascular complications,. To test this hypothesis, we propose in Specific Aim 2 to develop a new mouse model with a genetically controlled reduction in the production of the endogenous antioxidant lipoic acid (LA). We will modify the LA synthase (Lias) gene in such a way that the stability of Lias mRNA will be drastically reduced in a tissue specific fashion. Our hypothesis predicts that reduced production of LA will increase the oxidative stress already present in diabetic mice and enhance their development of vascular complications.
In Specific Aim 3, we propose to combine human-like diabetic dyslipidemia with genetically reduced antioxidant capacity due to LA deficiency to test our overall thesis that interactions between genetic polymorphic differences affecting lipid profiles and genetic differences affecting endogenous antioxidant levels determine the degree to which diabetes enhances cardiovascular disease. ? ?
Showing the most recent 10 out of 19 publications