The development of human brain is an immensely complex process, which is likely reflected in the complexity of the underlying transcriptional processes. Gene expression and its precise spatio-temporal regulation, particularly by histone modifications and non-coding RNAs, are crucial for normal human brain development and are thought to be altered in major developmental psychiatric disorders, such as autism spectrum disorders (ASD). Moreover, changes in the developmental brain transcriptome are likely the major contributors to the evolution of the most distinctly human aspects of cognition, some of which are also affected in ASD and other psychiatric disorders However, our understanding of transcriptional and epigenetic processes involved in the development, evolution and dysfunction of the human brain is still elusive. Furthermore, most of our knowledge of transcriptional processes in the human brain is limited to the expression of protein coding genes. Given that the genomes of humans and other mammals have approximately the same protein-coding complexity, there is likely an additional reservoir of transcriptional complexity, especially in organs such as the brain, which has many structurally and functionally distinct regions in humans. This view is corroborated by recent findings of the ENCODE consortium, which found many cis-acting regulatory regions and that 60% of the human genome is transcribed, with a majority of the transcripts belonging to non-coding RNAs. Moreover, these and other studies have also uncovered pervasive involvement of regulatory DNA variations in common human diseases and evolution. However, how these findings on non-coding elements in cell lines relate to the complexity of human brain development and dysfunction is still largely unknown. The objective of this proposal is to employ unbiased and genome-wide approaches to (1) discover and characterize developmentally regulated and human-specific non-coding functional genomic elements in multiple regions of the developing human and non-human primate brains, (2) and elucidate their role(s) in the molecular pathophysiology of ASD, by using genomic analyses of post-mortem ASD brains, by screening for de novo mutations in ASD quartets, and by modeling functional consequences of ASD-associated elements in the developing mouse brain.

Public Health Relevance

Non-coding functional genomic elements play a crucial role in normal human brain development by regulating gene transcription. These elements are thought to be altered in major developmental psychiatric and neurological disorders. Thus, the identification and functional characterization of non-coding elements in human neurodevelopment may lead to development of new and more effective treatments of major brain disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01MH103339-02
Application #
8869038
Study Section
Special Emphasis Panel (ZMH1-ERB-C (03))
Program Officer
Senthil, Geetha
Project Start
2014-06-15
Project End
2017-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
2
Fiscal Year
2015
Total Cost
$1,518,927
Indirect Cost
$565,721
Name
Yale University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06510
Khan, Atlas; Liu, Qian; Wang, Kai (2018) iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes. BMC Bioinformatics 19:501
Zhu, Ying; Sousa, André M M; Gao, Tianliuyun et al. (2018) Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362:
Amiri, Anahita; Coppola, Gianfilippo; Scuderi, Soraya et al. (2018) Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362:
Rhie, Suhn K; Schreiner, Shannon; Witt, Heather et al. (2018) Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation. Sci Adv 4:eaav8550
Toker, Lilah; Mancarci, Burak Ogan; Tripathy, Shreejoy et al. (2018) Transcriptomic Evidence for Alterations in Astrocytes and Parvalbumin Interneurons in Subjects With Bipolar Disorder and Schizophrenia. Biol Psychiatry 84:787-796
Wang, Daifeng; Liu, Shuang; Warrell, Jonathan et al. (2018) Comprehensive functional genomic resource and integrative model for the human brain. Science 362:
Li, Mingfeng; Santpere, Gabriel; Imamura Kawasawa, Yuka et al. (2018) Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362:
Bryois, Julien; Garrett, Melanie E; Song, Lingyun et al. (2018) Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun 9:3121
Gusev, Alexander; Mancuso, Nicholas; Won, Hyejung et al. (2018) Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet 50:538-548
An, Joon-Yong; Lin, Kevin; Zhu, Lingxue et al. (2018) Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362:

Showing the most recent 10 out of 34 publications