Understanding the exact cell-type composition in brain regions is fundamental to integrating physiological, behavioral and neurochemical data to systematically understand the brain structure and function. At present, although the major categories of cell-types present in brain have been defined, the different subtypes within these categories, as well as their location and connectivity are far from understood. DNA methylation (mC) is a stable covalent modification that persists in post-mitotic cells throughout their lifetim, defining their cellular identity. It was recently demonstrated that mC patterns in brain are highly dynamic throughout development, and that there are clear differences between the major types of cells i.e., neurons and glia, in the rodent and human cortex. These analyses have been taken a step further and have produced data at the cell-type level that shows that each neuronal type carry specific mC signatures in their genomes that define the population they belong to. These results now open the possibility of producing a catalog of cell-types in brain defined by methylome signatures. This proposal will utilize this cell-type-specific base-resolution methylome data to produce complete maps of cell-types in the rodent brain in situ, and by this means develop a systematic inventory and census of cell types in the brain based on an integrated view of their molecular identity. Based on preliminary results showing clear-cut differences between the methylomes of specific neuronal types, we propose to use cutting edge technology to discover and test specific differentially methylated regions that define, at the molecular level, cell-populations in the frontal cortex of mice. The results obtained will be made publically available, and will serve as foundation to produce a complete genomic census of cell-types in a brain region that can be scaled to the whole brain. If successful, the approach could be ultimately tested in the primate brain. This proposal is thus responsive to RFA MH-14-215 BRAIN Initiative: Transformative Approaches for Cell-Type Classification in the Brain (U01).

Public Health Relevance

The ultimate goal of this research is to construct a map of the brain that identifies each unique cell type and the manner in which they are connected, through developing a technology that uniquely identifies each distinct brain cell type using 'epigenomic marks'- a modification to the cytosine (C) base in DNA called methylation. We will utilize genome-wide cytosine methylation maps of brain cell populations to develop a novel in situ approach to probe the physical location of cells displaying unique methylation marks in brain slices and whole brains. This approach will result in the creation of an epigenetic map of each cell type that can be connected with existing brain gene expression atlases and connection maps, which can be further extended to the primate and human brain to serve as a reference for comparison with maps for neurological disease states such as schizophrenia or Alzheimer's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01MH105985-02
Application #
8935938
Study Section
Special Emphasis Panel (ZMH1-ERB-M (06))
Program Officer
Beckel-Mitchener, Andrea C
Project Start
2014-09-26
Project End
2017-05-31
Budget Start
2015-07-01
Budget End
2016-05-31
Support Year
2
Fiscal Year
2015
Total Cost
$962,263
Indirect Cost
$466,251
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
078731668
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Luo, Chongyuan; Rivkin, Angeline; Zhou, Jingtian et al. (2018) Robust single-cell DNA methylome profiling with snmC-seq2. Nat Commun 9:3824
He, Yupeng; Gorkin, David U; Dickel, Diane E et al. (2017) Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proc Natl Acad Sci U S A 114:E1633-E1640
Ecker, Joseph R; Geschwind, Daniel H; Kriegstein, Arnold R et al. (2017) The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. Neuron 96:542-557
Luo, Chongyuan; Keown, Christopher L; Kurihara, Laurie et al. (2017) Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357:600-604
Mo, Alisa; Luo, Chongyuan; Davis, Fred P et al. (2016) Epigenomic landscapes of retinal rods and cones. Elife 5:e11613
Bogdanovi?, Ozren; Smits, Arne H; de la Calle Mustienes, Elisa et al. (2016) Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet 48:417-26
Luo, Chongyuan; Ecker, Joseph R (2015) Epigenetics. Exceptional epigenetics in the brain. Science 348:1094-5
Kishore, Kamal; de Pretis, Stefano; Lister, Ryan et al. (2015) methylPipe and compEpiTools: a suite of R packages for the integrative analysis of epigenomics data. BMC Bioinformatics 16:313
He, Yupeng; Ecker, Joseph R (2015) Non-CG Methylation in the Human Genome. Annu Rev Genomics Hum Genet 16:55-77
Mo, Alisa; Mukamel, Eran A; Davis, Fred P et al. (2015) Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain. Neuron 86:1369-84