The study objective is to determine the efficacy of coenzyme Q10 (CoQ) in Huntington's disease (HD). Although the genetic defect that causes HD has been identified, there is no known effective treatment or cure. Rational therapeutic strategies in HD include those that are targeted to improving cellular energy production and reducing oxidative stress. Coenyzme Q10, a co-factor involved in mitochondrial electron transfer and an anti-oxidant, is a compound with these properties. Coenzyme Q10 slows progression and prolongs survival in a dose-dependent manner in a transgenic mouse model of HD. In a study in people with HD, CoQ at a dosage of 600 mg per day for 2 1/2 years appeared to slow the functional decline by approximately 13% compared to placebo. Pre-clinical and clinical studies with CoQ suggest that higher dosages are more beneficial. Toxicology studies were performed in dogs that supported proceeding with 2400 mg/day in people. The study hypothesis is that chronic treatment of HD patients with CoQ will slow the progressive functional decline of HD.
The specific aim i s to test this hypothesis by conducting a multi-center randomized, double-blind placebo-controlled, parallel group, study of CoQ involving 608 ambulatory HD subjects who are each treated for 60 months. Currently, 549 participants (90%) are enrolled and it is planned that enrollment will be completed by July 2012. The Data and Safety and Monitoring Committee reviewed the first futility analysis in August 2011 and recommended continuation of the study. Eligible subjects are randomized to CoQ 2400 mg/ day or a matching placebo. The primary outcome measure is the clinical progression of HD as measured by the change in total functional capacity (TFC) between baseline and 60 months. Secondary measures include changes in the other clinical rating scales of the Unified Huntington Disease Rating Scale, time to decline in TFC by 2 and 3 points, ability to complete the study at the assigned dosages and the frequencies of clinical and laboratory adverse events.

Public Health Relevance

Despite advances in understanding the cause of Huntington's disease (HD), there is no known effective treatment or cure. Coenyzme Q10 has demonstrated efficacy in an animal model of HD and was previously shown to possibly slow disease progression in people. Any compound that slows disease course will have immediate clinical importance, and a positive outcome of this study will enhance our understanding of the underlying biology of HD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
2U01NS052592-06
Application #
8371448
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Sutherland, Margaret L
Project Start
2005-09-30
Project End
2017-07-31
Budget Start
2012-09-30
Budget End
2013-07-31
Support Year
6
Fiscal Year
2012
Total Cost
$1,350,086
Indirect Cost
$574,546
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Alcalay, R N; Wolf, P; Levy, O A et al. (2018) Alpha galactosidase A activity in Parkinson's disease. Neurobiol Dis 112:85-90
Lee, Annie J; Wang, Yuanjia; Alcalay, Roy N et al. (2017) Penetrance estimate of LRRK2 p.G2019S mutation in individuals of non-Ashkenazi Jewish ancestry. Mov Disord 32:1432-1438
Banno, Haruhiko; Andrzejewski, Kelly L; McDermott, Michael P et al. (2017) Analysis of Participant Withdrawal in Huntington Disease Clinical Trials. J Huntingtons Dis 6:149-156
Devanand, Davangere P; Pelton, Gregory H; D'Antonio, Kristina et al. (2017) Low-dose Lithium Treatment for Agitation and Psychosis in Alzheimer Disease and Frontotemporal Dementia: A Case Series. Alzheimer Dis Assoc Disord 31:73-75
Schobel, Scott A; Palermo, Giuseppe; Auinger, Peggy et al. (2017) Motor, cognitive, and functional declines contribute to a single progressive factor in early HD. Neurology 89:2495-2502
Alcalay, Roy N; Levy, Oren A; Wolf, Pavlina et al. (2016) SCARB2 variants and glucocerebrosidase activity in Parkinson's disease. NPJ Parkinsons Dis 2:
Chen, Honglei; Marder, Karen (2016) Milk consumption and the risk of nigral degeneration. Neurology 86:496-7
Terrelonge Jr, Mark; Marder, Karen S; Weintraub, Daniel et al. (2016) CSF ?-Amyloid 1-42 Predicts Progression to Cognitive Impairment in Newly Diagnosed Parkinson Disease. J Mol Neurosci 58:88-92
Mata, Ignacio F; Leverenz, James B; Weintraub, Daniel et al. (2016) GBA Variants are associated with a distinct pattern of cognitive deficits in Parkinson's disease. Mov Disord 31:95-102
Alcalay, Roy N; Mejia-Santana, Helen; Mirelman, Anat et al. (2015) Neuropsychological performance in LRRK2 G2019S carriers with Parkinson's disease. Parkinsonism Relat Disord 21:106-10

Showing the most recent 10 out of 21 publications