Voltage-gated Na channels are responsible for initiation and propagation of the action potential in vertebrate nerve and muscle. Because of its essential physiological role in movement, the Na channel is a prime target of paralytic neurotoxins, which act at five or more distinct neurotoxin receptor sites. The genes encoding the polypeptide scorpion toxins have been cloned and successfully expressed in bacteria to produce large amounts of these toxins. Therefore, these toxins constitute a substantial terrorist threat as peptides. Moreover, bacteria or viruses expressing the potent polypeptide scorpion toxins are themselves terrorist threats because infection of human hosts with these agents would result in paralysis. The central hypothesis of the work proposed here is that toxin antagonists can be produced that will protect broadly and effectively against paralytic peptide neurotoxins. This hypothesis is supported by a proof-of-concept from our current research, in which the first antagonist of scorpion toxin action has been produced. In the research proposed here, we will define the receptor sites and mechanisms of action of the a- and ?-scorpion toxins on Na channels, and we will develop therapeutic agents to prevent their toxic actions as well as the toxic actions of mechanistically related peptide neurotoxins from other sources.
Our Specific Aims are: 1. Molecular mapping of the scorpion toxin receptor sites on Na channels. 2. Molecular mapping of the active sites of a- and ?-scorpion toxins. 3. Three-dimensional models of the scorpion toxin receptor sites. 4. Development of novel and potent toxin and small peptide antagonists. All of our work in Specific Aims 1 through 3 immediately flow into the design and development of toxin antagonists in Specific Aim 4 and will significantly advance the effort to develop novel therapeutic agents to protect against the threat of paralytic neurotoxins. These studies will provide new insights into the molecular mechanisms of toxin action on Na channels and will lead to development of effective antagonists of toxin action. These advances will be of crucial importance to developing an arsenal of counter-terrorism agents to prevent illness and deaths from potential bioterrorist attacks using these potent paralytic neurotoxins. In addition to these important advances for counter-terrorism, these studies will shed new light on the molecular mechanisms of voltage sensing and activation gating of Na channels, an essential step toward understanding the molecular mechanisms of electrical excitability and potentially a novel approach to development of drugs to treat chronic pain and neurological disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01NS058039-05
Application #
7906819
Study Section
Special Emphasis Panel (ZNS1-SRB-R (22))
Program Officer
Jett, David A
Project Start
2006-09-30
Project End
2012-05-31
Budget Start
2010-06-01
Budget End
2012-05-31
Support Year
5
Fiscal Year
2010
Total Cost
$630,881
Indirect Cost
Name
University of Washington
Department
Pharmacology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Zhang, Joel Z; Yarov-Yarovoy, Vladimir; Scheuer, Todd et al. (2012) Mapping the interaction site for a ?-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels. J Biol Chem 287:30719-28
Payandeh, Jian; Gamal El-Din, Tamer M; Scheuer, Todd et al. (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486:135-9
Payandeh, Jian; Scheuer, Todd; Zheng, Ning et al. (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353-8
Gur, Maya; Kahn, Roy; Karbat, Izhar et al. (2011) Elucidation of the molecular basis of selective recognition uncovers the interaction site for the core domain of scorpion alpha-toxins on sodium channels. J Biol Chem 286:35209-17
Zhang, Joel Z; Yarov-Yarovoy, Vladimir; Scheuer, Todd et al. (2011) Structure-function map of the receptor site for ?-scorpion toxins in domain II of voltage-gated sodium channels. J Biol Chem 286:33641-51
Wang, Jinti; Yarov-Yarovoy, Vladimir; Kahn, Roy et al. (2011) Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci U S A 108:15426-31
Karbat, Izhar; Ilan, Nitza; Zhang, Joel Z et al. (2010) Partial agonist and antagonist activities of a mutant scorpion beta-toxin on sodium channels. J Biol Chem 285:30531-8
Catterall, William A (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67:915-28
DeCaen, Paul G; Yarov-Yarovoy, Vladimir; Sharp, Elizabeth M et al. (2009) Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proc Natl Acad Sci U S A 106:22498-503
Moran, Yehu; Gordon, Dalia; Gurevitz, Michael (2009) Sea anemone toxins affecting voltage-gated sodium channels--molecular and evolutionary features. Toxicon 54:1089-101

Showing the most recent 10 out of 16 publications