Our bodies appear optically opaque because biological tissue scatters light strongly. Although advances such as multiphoton excitation have enabled deeper access for optical imaging by gating out scattered light, these strategies are still fundamentally limited to superficial depths (~ 1 mm). Yang's group at Caltech has pioneered time-reversal symmetry of optical scattering as a direct strategy to 'turn off' tissue scattering. n 2012, Yang's group demonstrated a time-reversal ultrasound-encoded (TRUE) focusing strategy based on the use of digital optical phase conjugation to flexibly and controllably deliver high optical power in ex vivo tissues. Here we propose to realize a digital TRUE focusing in vivo with rapid wavefront sensing and wavefront modulation. If successful, this novel approach will enable light focusing up to a depth of 4 mm in a living rodent brain, with a focal minimal width close to single-cell level (30 m). This ability to render a tight laser focus within biological tissues can be translated into powerful new methods for functional imaging and manipulation of the brain. We can scan the focus spot to perform fluorescence, Raman, and other types of imaging. We can also use the focus spot to selectively ablate tissues with high precision. This technology will also enable non-invasive focused light delivery for optogenetics - a key application area that is the focus of our proposed research. The use of digital TRUE would enable the extension of optogenetic techniques to the deep brain for non-invasive, spatially specific, excitation/inhibition. For this project, we will complement the power of optogenetic control of defined brain circuits with real-time circuit activity feedback, via in vivo anaesthetizd recordings, to establish digital TRUE as a new, noninvasive optical tool for optogenetic studies. This proposed work represents a powerful enabling technology for optogenetics - potentially opening up new applications and new methods for optogenetics. In addition to optogenetics, digital TRUE promises broader impacts on biomedical research and diagnosis. Digital TRUE's unique capability to focus light in deep tissues holds tremendous potential in enabling in vivo deep tissue optical imaging and biochemical analysis. Although there are significant technical challenges to be tackled, our proposed project is an important and necessary step in advancing TRUE to reach its full potential.
We propose to implement a novel and fast time-reversal based deep tissue optical focusing method with the specific goal of enabling a new optogenetic format. This project will allow us to controllably and flexibly focus light through optically opaqu brain tissue to stimulate neurons. More broadly, the optical focus can be used to perform high-resolution deep brain imaging and serve as an incisionless optical cutting tool.
Jang, Mooseok; Horie, Yu; Shibukawa, Atsushi et al. (2018) Wavefront shaping with disorder-engineered metasurfaces. Nat Photonics 12:84-90 |
Liu, Yan; Shen, Yuecheng; Ruan, Haowen et al. (2018) Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses. J Biomed Opt 23:1-4 |
Chan, Ken Y; Jang, Min J; Yoo, Bryan B et al. (2017) Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20:1172-1179 |
Xu, Jian; Ruan, Haowen; Liu, Yan et al. (2017) Focusing light through scattering media by transmission matrix inversion. Opt Express 25:27234-27246 |
Ruan, Haowen; Brake, Joshua; Robinson, J Elliott et al. (2017) Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light. Sci Adv 3:eaao5520 |
Qureshi, Muhammad Mohsin; Brake, Joshua; Jeon, Hee-Jae et al. (2017) In vivo study of optical speckle decorrelation time across depths in the mouse brain. Biomed Opt Express 8:4855-4864 |
Jang, M; Yang, C; Vellekoop, I M (2017) Optical Phase Conjugation with Less Than a Photon per Degree of Freedom. Phys Rev Lett 118:093902 |
Ruan, Haowen; Haber, Tom; Liu, Yan et al. (2017) Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica 4:1337-1343 |
Cua, Michelle; Zhou, Edward Haojiang; Yang, Changhuei (2017) Imaging moving targets through scattering media. Opt Express 25:3935-3945 |
Zhou, Edward Haojiang; Shibukawa, Atsushi; Brake, Joshua et al. (2016) Glare suppression by coherence gated negation. Optica 3:1107-1113 |
Showing the most recent 10 out of 18 publications