The proposal titled """"""""TCGA Data Analysis Center at Berkeley"""""""" focuses on integrating data from The Cancer Genome Atlas (TCGA) and providing that integrated analysis to the community by timely computation and redistribution through the TCGA Data Coordinating Center. The proposal includes six key elements (1) quality control of TCGA data, (2) systematic classification of tumors by molecular data, (3) analysis and integration of histopathology images (H&E), (4) interpretation of gene expression data in the context of other molecular data, (5) identification of interacting genetic loci by aberration co-occurrence, and (6) creation of genetic influence diagrams. These analyses will be performed on the mutation, copy number, genotype, expression, methylation and miRNA analyses that are likely to be key components of TCGA. Data analyses will begin after a cohesive analytical strategy is developed in a design document that clearly lays out the process by which our group will receive, analyze, and redistribute information. Our proposal includes collaborators who are pathologists, cancer biologists, geneticists, genomicists, computer scientists, and statisticians who have a proven track record of working together on large projects.
Bailey, Matthew H; Tokheim, Collin; Porta-Pardo, Eduard et al. (2018) Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 173:371-385.e18 |
Hmeljak, Julija; Sanchez-Vega, Francisco; Hoadley, Katherine A et al. (2018) Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov 8:1548-1565 |
Sanchez-Vega, Francisco; Mina, Marco; Armenia, Joshua et al. (2018) Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 173:321-337.e10 |
Way, Gregory P; Sanchez-Vega, Francisco; La, Konnor et al. (2018) Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Rep 23:172-180.e3 |
Ricketts, Christopher J; De Cubas, Aguirre A; Fan, Huihui et al. (2018) The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep 23:313-326.e5 |
Knijnenburg, Theo A; Wang, Linghua; Zimmermann, Michael T et al. (2018) Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep 23:239-254.e6 |
Ricketts, Christopher J; De Cubas, Aguirre A; Fan, Huihui et al. (2018) The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep 23:3698 |
Peng, Xinxin; Chen, Zhongyuan; Farshidfar, Farshad et al. (2018) Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Rep 23:255-269.e4 |
Huang, Kuan-Lin; Mashl, R Jay; Wu, Yige et al. (2018) Pathogenic Germline Variants in 10,389 Adult Cancers. Cell 173:355-370.e14 |
Ding, Li; Bailey, Matthew H; Porta-Pardo, Eduard et al. (2018) Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell 173:305-320.e10 |
Showing the most recent 10 out of 75 publications