Cancer onset and progression involves disruptions of complex networks of biomolecular interactions in cells, as a result of genomic and epigenomic aberrations. To achieve a deeper understanding of the genetic basis of cancer and to identify novel translational directions requires moving beyond detecting simple associations between genomic aberrations and clinical endpoints. However, little is known about how the states of disease-perturbed regulatory networks are altered by such aberrations, or how aberrations ultimately lead to cellular dysfunction. The goal of the Center for Systems Analysis of the Cancer Regulome is to address this challenge by developing and applying advanced algorithms and model-based approaches to enable the interpretation of TCGA data at the level of regulatory mechanisms;and to use such knowledge for enabling principled and systematic approaches for drug target discovery and therapeutic intervention in a clinically relevant manner. The Center will build three computational pipelines that will carry out integrated analyses of TCGA-derived high-throughput experimental data sets. These pipelines will: 1) identify potential mechanisms of genomic-transcriptomic regulation associated with specific cancers and clinical parameters;2) infer networks that explain cancer type-specific transcriptional profiles, and identify molecules that may be important control nodes in these networks as a means to prioritize drug targets for therapeutic intervention;and 3) compare cancer-associated features across all cancer types within TCGA to gain insight into the regulatory basis for cancer progression in different cancer types. The results of these pipelines will be rapidly disseminated through TCGA, together with visualization tools that facilitate the exploration and evaluation of each derived regulatory mechanism.
Huang, Kuan-Lin; Mashl, R Jay; Wu, Yige et al. (2018) Pathogenic Germline Variants in 10,389 Adult Cancers. Cell 173:355-370.e14 |
Ding, Li; Bailey, Matthew H; Porta-Pardo, Eduard et al. (2018) Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell 173:305-320.e10 |
Seiler, Michael; Peng, Shouyong; Agrawal, Anant A et al. (2018) Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Rep 23:282-296.e4 |
Liu, Yang; Sethi, Nilay S; Hinoue, Toshinori et al. (2018) Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell 33:721-735.e8 |
Jayasinghe, Reyka G; Cao, Song; Gao, Qingsong et al. (2018) Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Rep 23:270-281.e3 |
Saltz, Joel; Gupta, Rajarsi; Hou, Le et al. (2018) Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Rep 23:181-193.e7 |
Ellrott, Kyle; Bailey, Matthew H; Saksena, Gordon et al. (2018) Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Syst 6:271-281.e7 |
Campbell, Joshua D; Yau, Christina; Bowlby, Reanne et al. (2018) Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Rep 23:194-212.e6 |
Gao, Qingsong; Liang, Wen-Wei; Foltz, Steven M et al. (2018) Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Rep 23:227-238.e3 |
Thorsson, Vésteinn; Gibbs, David L; Brown, Scott D et al. (2018) The Immune Landscape of Cancer. Immunity 48:812-830.e14 |
Showing the most recent 10 out of 112 publications