The Administrative Core provides centralized offices for the coordination of the Yale Mouse Metabolic Phenotypic Center (MMPC) research activities. The Administrative Core operates under the supervision of the Program Director and the Deputy Program Director. The principle functions of the Administrative Core are as follows: ?Administrative and Financial Management ?Prioritization of Scientific Core usage by Users ?Coordination for Importing Mice from Extramural Institutions ?Material Transfer Agreements ?Cost sharing for use of the Scientific Cores ?Data Exchange and Confidentiality ?Feedback and Quality Control ?Administration of Pilot and Feasibility Projects ?Provision of a Scientific Enrichment Program ?Maintenance of the Yale MMPC Web Page ?Maintenance of the Yale MMPC Data Base ?Education and Training ?Research and Development In consultation with the MMPC/ AMDCC Coordinating and Bioinformatics Unit, the Administrative Core also maintains Center budgetary and workflow records; oversees the importation and workflow assignments for strains submitted for services; establishes, standardizes, documents and distributes phenotyping protocols; and provides for quality control and budgetary oversight. Whereas the significance and quality of the Yale MMPC is defined by its phenotyping cores, the Administrative Core promotes efficient operation of the Center and ensures its vitality and success.

Project Start
2001-07-01
Project End
2017-07-31
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
11
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
Perry, Rachel J; Peng, Liang; Cline, Gary W et al. (2017) A Non-invasive Method to Assess Hepatic Acetyl-CoA In Vivo. Cell Metab 25:749-756
Hwang, Janice J; Jiang, Lihong; Hamza, Muhammad et al. (2017) The human brain produces fructose from glucose. JCI Insight 2:e90508
Ikeda, Kenji; Kang, Qianqian; Yoneshiro, Takeshi et al. (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23:1454-1465
Lee, Hui-Young; Lee, Jae Sung; Alves, Tiago et al. (2017) Mitochondrial-Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation. Diabetes 66:2072-2081
Sharabi, Kfir; Lin, Hua; Tavares, Clint D J et al. (2017) Selective Chemical Inhibition of PGC-1? Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell 169:148-160.e15
Perry, Rachel J; Peng, Liang; Abulizi, Abudukadier et al. (2017) Mechanism for leptin's acute insulin-independent effect to reverse diabetic ketoacidosis. J Clin Invest 127:657-669
Okin, Daniel; Medzhitov, Ruslan (2016) The Effect of Sustained Inflammation on Hepatic Mevalonate Pathway Results in Hyperglycemia. Cell 165:343-56
Samuel, Varman T; Shulman, Gerald I (2016) The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 126:12-22
Camell, Christina D; Nguyen, Kim Y; Jurczak, Michael J et al. (2015) Macrophage-specific de Novo Synthesis of Ceramide Is Dispensable for Inflammasome-driven Inflammation and Insulin Resistance in Obesity. J Biol Chem 290:29402-13
Bettaieb, Ahmed; Jiang, Joy X; Sasaki, Yu et al. (2015) Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology 149:468-80.e10

Showing the most recent 10 out of 22 publications