Approximately 41,000 individuals live with upper-limb loss (loss of at least one hand) in the US. Fortunately, prosthetic devices have advanced considerably in the past decades with the development of dexterous, anthropomorphic hands. However, potentially the most promising used control strategy, myoelectric control, lacks a correspondingly high-level of performance and hence the use of dexterous hands remains highly limited. The need for a complete overhaul in upper limb prosthesis control is well highlighted by the abandonment rates of myoelectric devices, which can reach up to 40% in the case of trans-humeral amputees. The area of research that has received the most focus over the past decade has been ?pattern recognition,? which is a signal processing based control method that uses multi-channel surface electromyography as the control input. While pattern recognition provides intuitive operation of multiple prosthetic degrees of freedom, it lacks robustness and requires frequent, often daily calibration. Thus, it has not yet achieved the desired clinical acceptance. Our team proposes clinical translation of a novel highly adaptive upper limb prosthesis control system that incorporates two major advances: 1) machine learning (robust classification by implementing a non-boundary based algorithm), and 2) training by retrospectively incorporating user data from activities of daily living (ADL). The proposed system will enable machine intelligence with user input for prosthesis control. Our work is organized as follows: Phase I: (a) First, we will implement a fundamentally new machine intelligence technique, Extreme Learning Machine with Adaptive Sparse Representation Classification (EASRC), that is more resilient to untrained noisy conditions that users may encounter in the real-world and requires less data than traditional myoelectric signal processing. (b) In parallel, we will implement an adaptive learning algorithm, Nessa, which allows users to relabel misclassified data recorded during use and then update the EASRC classifier to adapt to any major extrinsic or intrinsic changes in the signals. Taken together, EASRC and Nessa comprise the Retrospectively Supervised Classification Updating (RESCU) system. Once, the RESCU implementation is complete, we will optimize the system through a joint effort with Johns Hopkins University, and complete an iterative benchtop RESCU evaluation with a focus group of 3 amputee subjects and their prosthetists. Phase II: Verification and validation of RESCU will be completed, culminating in third-party validation testing and certification. Finally, we will complete a clinical assessment including self-reporting subjective measures, and real-world usage metrics in a long-term clinical study.

Public Health Relevance

In this project, we aim to empower the user by bringing them into the control loop of their prosthesis and improve the stability of their control strategy over time. Specifically, we implement to a robust classifier, an adaptive learning algorithm, and a smartwatch interface, which allows the user to teach their device when it misunderstands the commands that the user is sending to control the prosthesis. This will result in improved control without cumbersome or time-consuming effort on the part of the user and, more importantly, we hope that it will give the user a greater sense of empowerment and ownership over their prosthesis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Small Business Innovation Research (SBIR) Cooperative Agreements - Phase II (U44)
Project #
4U44NS108894-02
Application #
10013405
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Hudak, Eric Michael
Project Start
2018-09-15
Project End
2021-08-31
Budget Start
2019-09-30
Budget End
2020-08-31
Support Year
2
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Infinite Biomedical Technologies, LLC
Department
Type
DUNS #
037376022
City
Baltimore
State
MD
Country
United States
Zip Code
21202