The overall goal of the """"""""mitogenic signaling networks"""""""" program is to develop high level statistical and specific physico-chemical models that described key features of mitogenic signaling networks activated by ErbB receptors (EGF receptor, and Neu2/Her2) and by oncogenic K-ras. We will use numerical models developed with cells in culture to explore tumor formation in mice genetically engineered to recapitulate key features of human disease. Ultimately, it is our hope that numerical models will predict the responsiveness of various tumors to anti-neoplastic therapies that target ras and ErbB. Currently these therapies work in only a subset of patients and must therefore be used in combination with, or after, conventional cytotoxic therapy. Throughout this project we will integrate data on immediate early responses obtained from biochemical analysis of receptors, adapter proteins, kinases and small GTPases with subsequent transcriptional responses and the acquisition of transformed phenotypes. This integration will be achieved through models designed to capture as much biological prior knowledge and experimental data as possible. In the initial phases of our work, physico-chemical models will be used when the amount of data is high and the biological complexity relatively low (cells grown in culture, for example) whereas statistical modeling will be used when the problems are less well defined and more complex. However, the future lies with hybrid models that link detailed mechanistic data from cells grown in culture to data on the behavior of cells in actual tumors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA112967-03
Application #
7286768
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2006-09-01
Budget End
2007-08-31
Support Year
3
Fiscal Year
2006
Total Cost
$367,395
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Kulkarni, Madhura; Tan, Tuan Zea; Syed Sulaiman, Nurfarhanah Bte et al. (2018) RUNX1 and RUNX3 protect against YAP-mediated EMT, stem-ness and shorter survival outcomes in breast cancer. Oncotarget 9:14175-14192
Oudin, Madeleine J; Barbier, Lucie; Schäfer, Claudia et al. (2017) MENA Confers Resistance to Paclitaxel in Triple-Negative Breast Cancer. Mol Cancer Ther 16:143-155
Bruno, Peter M; Liu, Yunpeng; Park, Ga Young et al. (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23:461-471
Werbin, Jeffrey L; Avendaño, Maier S; Becker, Verena et al. (2017) Multiplexed Exchange-PAINT imaging reveals ligand-dependent EGFR and Met interactions in the plasma membrane. Sci Rep 7:12150
Miller, Miles A; Sullivan, Ryan J; Lauffenburger, Douglas A (2017) Molecular Pathways: Receptor Ectodomain Shedding in Treatment, Resistance, and Monitoring of Cancer. Clin Cancer Res 23:623-629
Nagel, Zachary D; Kitange, Gaspar J; Gupta, Shiv K et al. (2017) DNA Repair Capacity in Multiple Pathways Predicts Chemoresistance in Glioblastoma Multiforme. Cancer Res 77:198-206
Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A (2016) Modeling Tumor Clonal Evolution for Drug Combinations Design. Trends Cancer 2:144-158
Tuncbag, Nurcan; Milani, Pamela; Pokorny, Jenny L et al. (2016) Network Modeling Identifies Patient-specific Pathways in Glioblastoma. Sci Rep 6:28668
Carmona, G; Perera, U; Gillett, C et al. (2016) Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE. Oncogene 35:5155-69
Zhao, Boyang; Sedlak, Joseph C; Srinivas, Raja et al. (2016) Exploiting Temporal Collateral Sensitivity in Tumor Clonal Evolution. Cell 165:234-246

Showing the most recent 10 out of 222 publications