Protein Production LIMS (PLIMS). The PLIMS Oracle database provides a more detailed protein production data model than SPINE, integrating closely with activities in the lab. SPINE is designed to share information between nodes of the NESG consortium, and convey this information to the public databases; PLIMS is designed specifically to improve the efficiency of protein production at the bench. A web-based application with a Java-based middleware atop an Oracle database, PLIMS consists of four main modules: (i) Target Registration & Management, (ii) Molecular Biology & Protein Expression, (iii) Large-scale Fermentation, and (iv) Protein Purification. It is designed to capture all the information needed to completely reproduce the protein sample production process, interfacing with robotics and utilizing bar codes, PDAs, and wireless technology. Data from PLIMS is uploaded to SPINE to be shared across the consortium or with public databases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54GM094597-02
Application #
8298550
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2011
Total Cost
$260,853
Indirect Cost
Name
Rutgers University
Department
Type
DUNS #
001912864
City
New Brunswick
State
NJ
Country
United States
Zip Code
08901
Zhu, Jiang; Li, Shuangli; Ramelot, Theresa A et al. (2018) Structural insights into the impact of two holoprosencephaly-related mutations on human TGIF1 homeodomain. Biochem Biophys Res Commun 496:575-581
Moremen, Kelley W; Ramiah, Annapoorani; Stuart, Melissa et al. (2018) Expression system for structural and functional studies of human glycosylation enzymes. Nat Chem Biol 14:156-162
Wang, Zi; Nie, Yao; Zhang, Kunxiao et al. (2018) Solution structure of SHIP2 SH2 domain and its interaction with a phosphotyrosine peptide from c-MET. Arch Biochem Biophys 656:31-37
Pederson, Kari; Chalmers, Gordon R; Gao, Qi et al. (2017) NMR characterization of HtpG, the E. coli Hsp90, using sparse labeling with 13C-methyl alanine. J Biomol NMR 68:225-236
Harish, Balasubramanian; Swapna, G V T; Kornhaber, Gregory J et al. (2017) Multiple helical conformations of the helix-turn-helix region revealed by NOE-restrained MD simulations of tryptophan aporepressor, TrpR. Proteins 85:731-740
Liang, Chunjie; Zhu, Jiang; Hu, Rui et al. (2017) Solution NMR structure of RHE_CH02687 from Rhizobium etli: A novel flavonoid-binding protein. Proteins 85:951-956
Sachleben, Joseph R; Adhikari, Aashish N; Gawlak, Grzegorz et al. (2017) Aromatic claw: A new fold with high aromatic content that evades structural prediction. Protein Sci 26:208-217
Gao, Qi; Chalmers, Gordon R; Moremen, Kelley W et al. (2017) NMR assignments of sparsely labeled proteins using a genetic algorithm. J Biomol NMR 67:283-294
Zhu, Jiang; Wang, Huapu; Ramelot, Theresa A et al. (2017) Solution NMR structure of zinc finger 4 and 5 from human INSM1, an essential regulator of neuroendocrine differentiation. Proteins 85:957-962
Guan, Rongjin; Aiyer, Sriram; Cote, Marie L et al. (2017) X-ray crystal structure of the N-terminal region of Moloney murine leukemia virus integrase and its implications for viral DNA recognition. Proteins 85:647-656

Showing the most recent 10 out of 182 publications