The BCM Human Genome Sequencing Center (HGSC) has developed a large scale, flexible DNA sequencing resource to solve major problems in human genetics and support clinical care. Technical excellence and innovation has allowed the use of multiple sequence platforms and the adaptation of the best sample resources and appropriate data models to match project requirements. In the first 18 months of the proposed timeline at least 1 petabase of DNA sequence will be generated, and 90% of capacity will be dedicated to cancer and human genetic studies. The remainder will be applied to comparative and metagenomics. All of this is made possible because of the HGSC's integrated high throughput data production pipeline that spans sample procurement and processing, sequence production, informatics, data analysis, and dissemination. The modular nature of this pipeline allows us to meet, or even exceed production expectations while at the same time provides flexibility to serve the diverse (and growing) needs of the genomics and biomedical research community. Overall one-half of the capacity will be dedicated to ongoing and emerging NHGRI programs with the remainder to a series of 11 innovative Center Initiated Projects (CIPs). The CIPs include solving the basis of selected common chronic human diseases, piloting a newborn screen and a national population-based health care model, deeply sampling human genetic diversity, identifying critical somatic mutations in rare and familiar cancers and the role of epigenomics in cancer therapy. For understanding common disease, we will develop future CIPs relevant to emerging priorities in human health such as Alzheimer?s disease. We will also provide a complete genome analysis of all the laboratory rhesus macaques in the USA, as well as study their microbiome. The virome in health and disease will be characterized and an educational program, based upon personal genome sequences will be delivered. The overall objectives, specific aims, and CIPs embodied in this proposal will transform biology through genomics and lead to a new phase of clinical applications.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
2U54HG003273-09
Application #
8236217
Study Section
Special Emphasis Panel (ZHG1-HGR-P (O2))
Program Officer
Wang, Lu
Project Start
2003-11-10
Project End
2015-10-31
Budget Start
2011-11-01
Budget End
2012-10-31
Support Year
9
Fiscal Year
2012
Total Cost
$21,327,568
Indirect Cost
$1,060,883
Name
Baylor College of Medicine
Department
Genetics
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Hoadley, Katherine A; Yau, Christina; Hinoue, Toshinori et al. (2018) Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173:291-304.e6
Mwesigwa, Savannah; Moulds, Joann M; Chen, Alice et al. (2018) Whole-exome sequencing of sickle cell disease patients with hyperhemolysis syndrome suggests a role for rare variation in disease predisposition. Transfusion 58:726-735
Sanghvi, Rashesh V; Buhay, Christian J; Powell, Bradford C et al. (2018) Characterizing reduced coverage regions through comparison of exome and genome sequencing data across 10 centers. Genet Med 20:855-866
Schaub, Franz X; Dhankani, Varsha; Berger, Ashton C et al. (2018) Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Syst 6:282-300.e2
Liu, Jianfang; Lichtenberg, Tara; Hoadley, Katherine A et al. (2018) An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 173:400-416.e11
Bailey, Matthew H; Tokheim, Collin; Porta-Pardo, Eduard et al. (2018) Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 173:371-385.e18
Schoville, Sean D; Chen, Yolanda H; Andersson, Martin N et al. (2018) A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep 8:1931
Blue, Elizabeth E; Bis, Joshua C; Dorschner, Michael O et al. (2018) Genetic Variation in Genes Underlying Diverse Dementias May Explain a Small Proportion of Cases in the Alzheimer's Disease Sequencing Project. Dement Geriatr Cogn Disord 45:1-17
Harrison, Mark C; Jongepier, Evelien; Robertson, Hugh M et al. (2018) Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 2:557-566
Hwang, Jessica L; Park, Soo-Young; Ye, Honggang et al. (2018) FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr Diabetes 19:388-392

Showing the most recent 10 out of 436 publications