The overall goal of this project is to generate fine-structure RNA maps in human and mouse (C57BL/6NJ) tissues and primary cell lines using a variety of high-throughput sequencing platforms, to evaluate the biological importance of novel transcripts by determining if evidence of their translated products can be identified. From each sample analyzed, we propose to isolate long (>200 nucleotides) and short (< 200 nucleotides) RNA in biological duplicate. Illumina-based maps for these samples will initially be generated using (1) RNA sequencing (-seq) of ribosomal (r-)RNA depleted long total RNA. (2) RNA-seq of tobacco acid pyrophosphatase (TAP) pre-treated short RNA (3) Pair-end Cap Analysis of Gene Expression (PE-CAGE) of total RNA. Additionally, for a subset of primary cell lines we will generate the above libraries from nuclear and cytoplasmic subcellular fractions. Long RNA-Seq data will be distilled down into functional elements consisting of splice junctions, polyadenylatio sites and de novo genes and transcripts. The short RNA data will be distilled into contigs representing the 5' ends of short RNAs up to the read length. PE-CAGE data will be analyzed to form clusters representing the 5' ends of transcripts linked to a tag internal to the transcript body. Importantly, each element will be assessed for reproducibility using a nonparametric Irreproducible Detection Rate (nplDR) script. Collectively, these data will allow for the detection of novel transcribed regions and supportive information as to the location of promoter regions and subcellular residence of transcripts. In aggregate, these data will be used to generate models of both noncoding and protein coding transcripts and to distinguish isoforms at complex loci necessary to obtain a comprehensive view of mammalian transcriptomes. For a subset of these samples we will simultaneously collect the genome sequence of the human donors to provide a reference map that will be used to map the RNA data against and derive information concerning allele-specific expression and RNA editing. Unannotated transcript models will be tested using long-range (PacBio/454) sequencing. Lastly, proteogenomic analysis will be done and the results compared against the unannotated transcripts.

Public Health Relevance

The data being proposed herein are foundational to basic, clinical and applied research. In the spirit of transparency and with a policy of rapid-release, th scientific and health care communities can make immediate use of these findings and will benefit from improved human and mouse genome annotations and broadly sampled expression data.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
3U54HG007004-04S1
Application #
9325113
Study Section
Special Emphasis Panel (ZHG1-HGR-M (M1))
Program Officer
Feingold, Elise A
Project Start
2012-09-21
Project End
2017-07-31
Budget Start
2016-09-27
Budget End
2017-07-31
Support Year
4
Fiscal Year
2016
Total Cost
$897,204
Indirect Cost
$399,727
Name
Cold Spring Harbor Laboratory
Department
Type
DUNS #
065968786
City
Cold Spring Harbor
State
NY
Country
United States
Zip Code
11724
Ballouz, Sara; Dobin, Alexander; Gingeras, Thomas R et al. (2018) The fractured landscape of RNA-seq alignment: the default in our STARs. Nucleic Acids Res 46:5125-5138
Lagarde, Julien; Uszczynska-Ratajczak, Barbara; Carbonell, Silvia et al. (2017) High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat Genet 49:1731-1740
Hon, Chung-Chau; Ramilowski, Jordan A; Harshbarger, Jayson et al. (2017) An atlas of human long non-coding RNAs with accurate 5' ends. Nature 543:199-204
Rodríguez-Martín, Bernardo; Palumbo, Emilio; Marco-Sola, Santiago et al. (2017) ChimPipe: accurate detection of fusion genes and transcription-induced chimeras from RNA-seq data. BMC Genomics 18:7
Batut, Philippe J; Gingeras, Thomas R (2017) Conserved noncoding transcription and core promoter regulatory code in early Drosophila development. Elife 6:
Breschi, Alessandra; Gingeras, Thomas R; Guigó, Roderic (2017) Comparative transcriptomics in human and mouse. Nat Rev Genet 18:425-440
Breschi, Alessandra; Djebali, Sarah; Gillis, Jesse et al. (2016) Gene-specific patterns of expression variation across organs and species. Genome Biol 17:151
Dobin, Alexander; Gingeras, Thomas R (2016) Optimizing RNA-Seq Mapping with STAR. Methods Mol Biol 1415:245-62
Lagarde, Julien; Uszczynska-Ratajczak, Barbara; Santoyo-Lopez, Javier et al. (2016) Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nat Commun 7:12339
Pervouchine, Dmitri D; Djebali, Sarah; Breschi, Alessandra et al. (2015) Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression. Nat Commun 6:5903

Showing the most recent 10 out of 23 publications