Emerging evidence that the gut microbiota may contribute in important ways to human health and disease has led us and others to hypothesize that both symbiotic and pathological relationships between gut microbes and their host may be key contributors to obesity and the metabolic complications of obesity. Our """"""""Thrifty Microbiome Hypothesis"""""""" poses that gut microbiota play a key role in human energy homeostasis. Specifically, constituents of the gut microbial community may introduce a survival advantage to its host in times of nutrient scarcity, promoting positive energy balance by increasing efficiency of nutrient absorption and improving metabolic efficiency and energy storage. However, in the presence of excess nutrients, fat accretion and obesity may result, and in genetically predisposed individuals, increased fat mass may result in preferential abdominal obesity, ectopic fat deposition (liver, muscle), and metabolic complications of obesity (insulin resistance, hypertension, hyperlipidemia). Furthermore, in the presence of excess nutrients, a pathological transition of the gut microbial community may occur, causing leakage of bacterial products into the intestinal lymphatics and portal circulation, thereby inducing an inflammatory state, further aggravating metabolic syndrome traits and accelerating atherosclerosis. This pathological transition and the extent to which antimicrobial leakage occurs and causes inflammatory and other maladaptive sequelae of obesity may also be influenced by host factors, including genetics. In the proposed study, we will directly test the Thrifty Mirobiome Hypothesis by performing detailed genomic and functional assessment of gut microbial communities in intensively phenotyped and genotyped human subjects before and after intentional manipulation of the gut microbiome. To address these hypotheses, five specific aims are proposed: (1) enroll three age- and sex-matched groups from the Old Order Amish: (i) 50 obese subjects (BMI >30 kg/m2) with metabolic syndrome, (ii) 50 obese subjects (BMI >30 kg/m2) without metabolic syndrome, and (iii) 50 nonobese subjects (BMI <25 kg/m2) without metabolic syndrome and characterize the architecture of the gut microbiota from the subjects enrolled in this study by high-throughput sequencing of 16S rRNA genes;(2) characterize the gene content (metagenome) to assess the metabolic potential of the gut microbiota in 75 subjects to determine whether particular genes or pathways are correlated with disease phenotype;(3) characterize the transcriptome in 75 subjects to determine whether differences in gene expression in the gut microbiota are correlated with disease phenotype, (4) determine the effect of manipulation of the gut microbiota with antibiotics on energy homeostasis, inflammation markers, and metabolic syndrome traits in 50 obese subjects with metabolic syndrome and (5) study the relationship between gut microbiota and metabolic and cardiovascular disease traits, weight change, and host genomics in 1,000 Amish already characterized for these traits and in whom 500K Affymetrix SNP chips have already been completed. These studies will provide our deepest understanding to date of the role of gut microbes in terms of 'who's there?', 'what are they doing?', and 'how are they influencing host energy homeostasis, obesity and its metabolic complications?

Public Health Relevance

This study aims to unravel the contribution of the bacteria that normally inhabit the human gastrointestinal tract to the development of obesity, and its more severe metabolic consequences including cardiovascular disease, insulin resistance and Type II diabetes. We will take a multidisciplinary approach to study changes in the structure and function of gut microbial communities in three sets of Old Order Amish patients from Lancaster Pennsylvania: obese patients, obese patients with metabolic syndrome and non-obese individuals. The Old Order Amish are a genetically closed homogeneous Caucasian population of Central European ancestry ideal for genetic studies. These works have the potential to provide new mechanistic insights into the role of gut microflora in obesity and metabolic syndrome, a disease that is responsible for significant morbidity in the adult population, and may ultimately lead to novel approaches for prevention and treatment of this disorder.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Exploratory/Developmental Cooperative Agreement Phase I (UH2)
Project #
1UH2DK083982-01
Application #
7646073
Study Section
Special Emphasis Panel (ZRG1-IDM-A (52))
Program Officer
Karp, Robert W
Project Start
2009-06-24
Project End
2012-05-31
Budget Start
2009-06-24
Budget End
2012-05-31
Support Year
1
Fiscal Year
2009
Total Cost
$1,024,737
Indirect Cost
Name
University of Maryland Baltimore
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Zupancic, Margaret L; Cantarel, Brandi L; Liu, Zhenqiu et al. (2012) Analysis of the gut microbiota in the old order Amish and its relation to the metabolic syndrome. PLoS One 7:e43052
Liu, Zhenqiu; Hsiao, William; Cantarel, Brandi L et al. (2011) Sparse distance-based learning for simultaneous multiclass classification and feature selection of metagenomic data. Bioinformatics 27:3242-9