This application is for an ICTSA to be established at the University of Texas Medical Branch at Galveston (UTMB). Our rationale is that UTMB brings depth to the CTSA consortium, because: we are the only academic health center with both an NIAID-funded Regional Center for Excellence in Biodefense and a National Biocontainment Laboratory;we are the only center with two NIH-funded translationally oriented proteomics centers in biomarker research;we have developed translational research programs with three national laboratories (the Galveston and Sandia National Laboratories and NASA);we have trained more underrepresented minority MDs than any non-historically Black institution in the US;we have the only approved PhD-awarding Clinical Science Training program in a public university in Texas;and we have the largest telemedicine operation in the world. In response to Hurricane Ike, we have established a richer outpatient clinical research network in South East Texas. Our ICTSA are to: 1. Facilitate translational research as a rigorous discipline;2. Develop translational research training programs at all levels in the graduate continuum;3. Effectively conduct and bridge step 1 translational research (Tl) to steps 2 (T2) and -3 (T3);and 4. Interface productively with the national CTSA Consortium. To accomplish these goals, we have organized our ICTSA into 12 """"""""Key Resources"""""""" ~ combinations of university core laboratories and intellectual resources, integrated by a single point of investigator/trainee contact. This structure will make us more rapidly responsive to the needs of our investigators and trainees. In this application, our Key Resources are assembled to support the translational goals of exemplar multidisciplinary translational teams (MTTs), generally organized around our successful NIH- funded interdisciplinary research centers. Three overlying principles will guide our ICTSA's operations, to: 1. Employ proactive mechanisms in identifying new team-oriented research opportunities;2. Prioritize trainee involvement in a team-based culture;and 3. Integrate systems biological approaches into translational research. UTMB's senior leadership is providing significant new institutional resources, including establishing the Institute for Translational Sciences (ITS), our new home for translational research;new commitments of pilot grant support; administrative support;and support for a significant expansion of bioinformatics faculty. The ITS Director reports directly to UTMB's Provost, who is responsible for integration of research and education university-wide. We are thus well-positioned to achieve our goals, significantly transform clinical and translational research at UTMB, and contribute to the national CTSA Consortium.

Public Health Relevance

The ICTSA will allow our researchers to more quickly and effectively translate basic science discoveries into improvements in human health. In particular this award will allow us to build teams of researchers with diverse skills who can work effectively towards a health outcome-related goal. In this way the ICTSA will break down communication, technology and regulatory barriers and transform how our university conducts patient-oriented research.

Agency
National Institute of Health (NIH)
Institute
National Center for Advancing Translational Sciences (NCATS)
Type
Linked Specialized Center Cooperative Agreement (UL1)
Project #
3UL1TR000071-05S1
Application #
8660168
Study Section
Special Emphasis Panel (ZRR1-CR-1 (02))
Program Officer
Wilde, David B
Project Start
2009-07-14
Project End
2014-03-31
Budget Start
2013-08-01
Budget End
2014-03-31
Support Year
5
Fiscal Year
2013
Total Cost
$900,000
Indirect Cost
$8,341
Name
University of Texas Medical Br Galveston
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771149
City
Galveston
State
TX
Country
United States
Zip Code
77555
Koppelmans, Vincent; Scott, Jessica M; Downs, Meghan E et al. (2018) Exercise effects on bed rest-induced brain changes. PLoS One 13:e0205515
Voigt, Charles D; Hundeshagen, Gabriel; Malagaris, Ioannis et al. (2018) Effects of a restrictive blood transfusion protocol on acute pediatric burn care: Transfusion threshold in pediatric burns. J Trauma Acute Care Surg 85:1048-1054
Kuo, Yong-Fang; Raji, Mukaila A; Liaw, Victor et al. (2018) Opioid Prescriptions in Older Medicare Beneficiaries After the 2014 Federal Rescheduling of Hydrocodone Products. J Am Geriatr Soc 66:945-953
Speidel, Jordan T; Xu, Meixiang; Abdel-Rahman, Sherif Z (2018) Differential effect of ABCB1 haplotypes on promoter activity. Pharmacogenet Genomics 28:69-77
Scott, Jessica M; Martin, David; Ploutz-Snyder, Robert et al. (2018) Efficacy of Exercise and Testosterone to Mitigate Atrophic Cardiovascular Remodeling. Med Sci Sports Exerc 50:1940-1949
Speidel, Jordan T; Xu, Meixiang; Abdel-Rahman, Sherif Z (2018) Bisphenol A (BPA) and bisphenol S (BPS) alter the promoter activity of the ABCB1 gene encoding P-glycoprotein in the human placenta in a haplotype-dependent manner. Toxicol Appl Pharmacol 359:47-54
El Ayadi, Amina; Prasai, Anesh; Wang, Ye et al. (2018) ?-Adrenergic Receptor Trafficking, Degradation, and Cell Surface Expression Are Altered in Dermal Fibroblasts from Hypertrophic Scars. J Invest Dermatol 138:1645-1655
Dillon, E Lichar; Sheffield-Moore, Melinda; Durham, William J et al. (2018) Efficacy of Testosterone plus NASA Exercise Countermeasures during Head-Down Bed Rest. Med Sci Sports Exerc 50:1929-1939
Speidel, Jordan T; Xu, Meixiang; Abdel-Rahman, Sherif Z (2018) Promoter Haplotypes of the ABCB1 Gene Encoding the P-Glycoprotein Differentially Affect Its Promoter Activity by Altering Transcription Factor Binding. DNA Cell Biol 37:973-981
Lu, Lee-Jane W; Chen, Nai-Wei; Nayeem, Fatima et al. (2018) Novel effects of phytoestrogenic soy isoflavones on serum calcium and chloride in premenopausal women: A 2-year double-blind, randomized, placebo-controlled study. Clin Nutr 37:1862-1870

Showing the most recent 10 out of 402 publications